Programação imunológica gramatical para inferência automática de modelos e projeto ótimo de estruturas

Bibliographic Details
Main Author: Bernardino, Heder Soares
Publication Date: 2012
Format: Doctoral thesis
Language: por
Source: Biblioteca Digital de Teses e Dissertações do LNCC
Download full: https://tede.lncc.br/handle/tede/154
Summary: Muito esforço tem sido feito visando automatizar o processo de descoberta de conhecimento científico. Embora algumas etapas do mesmo já possam ser automatizadas, a substituição do especialista por um sistema computacional em atividades que requerem criatividade permanece como um grande desafio. No campo da inteligência computacional as técnicas de programação genética, e de evolução gramatical em especial, parecem ser adequadas a estas tarefas. O uso de gramáticas formais restringe a sintaxe dos artefatos possíveis, possibilitando adicionar viés na busca e gerar soluções mais compreensíveis. Além disso, a evolução gramatical faz uma distinção clara entre o espaço de busca e o espaço de soluções, oferecendo mais flexibilidade. Assim, propõe aqui a programação imunológica gramatical, uma técnica para evolução de programas que combina um mecanismo de busca inspirado pela teoria da seleção clonal com a representação via evolução gramatical. Adicionalmente, foi elaborado um novo procedimento de decodificação da solução candidata que sempre gera um programa válido. Finalmente, a técnica é aplicada a problemas de regressão simbólica e na inferência de modelos na forma de equações diferenciais ordinárias. Sua aplicabilidade na engenharia mecânica é também exemplificada no apoio à modelagem de deformações de dutos com amassamentos e no auxílio à criação de projetos estruturais ótimos.
id LNCC_ccdca9bd0cd33df1790dfaa63cce5e7d
oai_identifier_str oai:tede-server.lncc.br:tede/154
network_acronym_str LNCC
network_name_str Biblioteca Digital de Teses e Dissertações do LNCC
repository_id_str
spelling Programação imunológica gramatical para inferência automática de modelos e projeto ótimo de estruturasGrammar-based immune programming for automatic model inference and optimum design of structuresAlgorítmos genéticosProjeto estruturalGenetic algorithmsStructural designCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOMuito esforço tem sido feito visando automatizar o processo de descoberta de conhecimento científico. Embora algumas etapas do mesmo já possam ser automatizadas, a substituição do especialista por um sistema computacional em atividades que requerem criatividade permanece como um grande desafio. No campo da inteligência computacional as técnicas de programação genética, e de evolução gramatical em especial, parecem ser adequadas a estas tarefas. O uso de gramáticas formais restringe a sintaxe dos artefatos possíveis, possibilitando adicionar viés na busca e gerar soluções mais compreensíveis. Além disso, a evolução gramatical faz uma distinção clara entre o espaço de busca e o espaço de soluções, oferecendo mais flexibilidade. Assim, propõe aqui a programação imunológica gramatical, uma técnica para evolução de programas que combina um mecanismo de busca inspirado pela teoria da seleção clonal com a representação via evolução gramatical. Adicionalmente, foi elaborado um novo procedimento de decodificação da solução candidata que sempre gera um programa válido. Finalmente, a técnica é aplicada a problemas de regressão simbólica e na inferência de modelos na forma de equações diferenciais ordinárias. Sua aplicabilidade na engenharia mecânica é também exemplificada no apoio à modelagem de deformações de dutos com amassamentos e no auxílio à criação de projetos estruturais ótimos.Much effort has been made in order to automate the process of scientific knowledge discovery. Although some of the steps can be automated, the replacement of the specialist for a computer system in activities that require creativity remains a great challenge. In the field of computational intelligence the genetic programming techniques, and grammatical evolution in particular, appear to be adequate to these tasks. The use of formal grammars restricts the syntax of possible artifacts, making it possible to add bias in the search and generate more understandable solutions. Moreover, grammatical evolution establishes a clear distinction between the search space and the solution space, offering more flexibility. Thus, we propose here the grammar-based immune programming, a technique for evolving programs which combines a search engine inspired by clonal selection theory with the representation via grammatical evolution. Additionally, we developed a new procedure for decoding candidate solution that always generates a valid program. Finally, the technique is applied to symbolic regression and model inference in the form of ordinary differential equations. Its applicability in mechanical engineering is also exemplified in supporting the modeling of strains in a deformed pipe, and assisting the creation of optimal structural designLaboratório Nacional de Computação CientíficaServiço de Análise e Apoio a Formação de Recursos HumanosBRLNCCPrograma de Pós-Graduação em Modelagem ComputacionalBarbosa, Helio José CorrêaCPF:194 306 716 34http://lattes.cnpq.br/0375745110240885Loula, Abimael Fernando DouradoCPF:24477575734http://lattes.cnpq.br/7315592936477868Dardenne, Laurent EmmanuelCPF:49809431104http://lattes.cnpq.br/8344194525615133Ebecken, Nelson Francisco FavillaCPF:34005005772http://lattes.cnpq.br/2703716951709834Takahashi, Ricardo Hiroshi Caldeirahttp://lattes.cnpq.br/4947186824317781Bernardino, Heder Soares2015-03-04T18:57:47Z2013-07-092012-06-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://tede.lncc.br/handle/tede/154porinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações do LNCCinstname:Laboratório Nacional de Computação Científica (LNCC)instacron:LNCC2018-07-04T12:59:44Zoai:tede-server.lncc.br:tede/154Biblioteca Digital de Teses e Dissertaçõeshttps://tede.lncc.br/PUBhttps://tede.lncc.br/oai/requestlibrary@lncc.br||library@lncc.bropendoar:2018-07-04T12:59:44Biblioteca Digital de Teses e Dissertações do LNCC - Laboratório Nacional de Computação Científica (LNCC)false
dc.title.none.fl_str_mv Programação imunológica gramatical para inferência automática de modelos e projeto ótimo de estruturas
Grammar-based immune programming for automatic model inference and optimum design of structures
title Programação imunológica gramatical para inferência automática de modelos e projeto ótimo de estruturas
spellingShingle Programação imunológica gramatical para inferência automática de modelos e projeto ótimo de estruturas
Bernardino, Heder Soares
Algorítmos genéticos
Projeto estrutural
Genetic algorithms
Structural design
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short Programação imunológica gramatical para inferência automática de modelos e projeto ótimo de estruturas
title_full Programação imunológica gramatical para inferência automática de modelos e projeto ótimo de estruturas
title_fullStr Programação imunológica gramatical para inferência automática de modelos e projeto ótimo de estruturas
title_full_unstemmed Programação imunológica gramatical para inferência automática de modelos e projeto ótimo de estruturas
title_sort Programação imunológica gramatical para inferência automática de modelos e projeto ótimo de estruturas
author Bernardino, Heder Soares
author_facet Bernardino, Heder Soares
author_role author
dc.contributor.none.fl_str_mv Barbosa, Helio José Corrêa
CPF:194 306 716 34
http://lattes.cnpq.br/0375745110240885
Loula, Abimael Fernando Dourado
CPF:24477575734
http://lattes.cnpq.br/7315592936477868
Dardenne, Laurent Emmanuel
CPF:49809431104
http://lattes.cnpq.br/8344194525615133
Ebecken, Nelson Francisco Favilla
CPF:34005005772
http://lattes.cnpq.br/2703716951709834
Takahashi, Ricardo Hiroshi Caldeira
http://lattes.cnpq.br/4947186824317781
dc.contributor.author.fl_str_mv Bernardino, Heder Soares
dc.subject.por.fl_str_mv Algorítmos genéticos
Projeto estrutural
Genetic algorithms
Structural design
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
topic Algorítmos genéticos
Projeto estrutural
Genetic algorithms
Structural design
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description Muito esforço tem sido feito visando automatizar o processo de descoberta de conhecimento científico. Embora algumas etapas do mesmo já possam ser automatizadas, a substituição do especialista por um sistema computacional em atividades que requerem criatividade permanece como um grande desafio. No campo da inteligência computacional as técnicas de programação genética, e de evolução gramatical em especial, parecem ser adequadas a estas tarefas. O uso de gramáticas formais restringe a sintaxe dos artefatos possíveis, possibilitando adicionar viés na busca e gerar soluções mais compreensíveis. Além disso, a evolução gramatical faz uma distinção clara entre o espaço de busca e o espaço de soluções, oferecendo mais flexibilidade. Assim, propõe aqui a programação imunológica gramatical, uma técnica para evolução de programas que combina um mecanismo de busca inspirado pela teoria da seleção clonal com a representação via evolução gramatical. Adicionalmente, foi elaborado um novo procedimento de decodificação da solução candidata que sempre gera um programa válido. Finalmente, a técnica é aplicada a problemas de regressão simbólica e na inferência de modelos na forma de equações diferenciais ordinárias. Sua aplicabilidade na engenharia mecânica é também exemplificada no apoio à modelagem de deformações de dutos com amassamentos e no auxílio à criação de projetos estruturais ótimos.
publishDate 2012
dc.date.none.fl_str_mv 2012-06-18
2013-07-09
2015-03-04T18:57:47Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://tede.lncc.br/handle/tede/154
url https://tede.lncc.br/handle/tede/154
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Laboratório Nacional de Computação Científica
Serviço de Análise e Apoio a Formação de Recursos Humanos
BR
LNCC
Programa de Pós-Graduação em Modelagem Computacional
publisher.none.fl_str_mv Laboratório Nacional de Computação Científica
Serviço de Análise e Apoio a Formação de Recursos Humanos
BR
LNCC
Programa de Pós-Graduação em Modelagem Computacional
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do LNCC
instname:Laboratório Nacional de Computação Científica (LNCC)
instacron:LNCC
instname_str Laboratório Nacional de Computação Científica (LNCC)
instacron_str LNCC
institution LNCC
reponame_str Biblioteca Digital de Teses e Dissertações do LNCC
collection Biblioteca Digital de Teses e Dissertações do LNCC
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do LNCC - Laboratório Nacional de Computação Científica (LNCC)
repository.mail.fl_str_mv library@lncc.br||library@lncc.br
_version_ 1832737879209541632