Detection of traffic accidents using artificial intelligence
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2024 |
| Outros Autores: | , , |
| Tipo de documento: | Artigo |
| Idioma: | eng |
| Título da fonte: | ITEGAM-JETIA |
| Texto Completo: | https://itegam-jetia.org/journal/index.php/jetia/article/view/1109 |
Resumo: | This article analyzes different architectures with which a neural network can be developed using computer vision with the objective of detecting traffic accidents. For the development of the software, the Java Script programming language was used, reaching the conclusion that the best architecture to use is a Convolutional Neural Network since it has the capabilities of detecting features within the images. At the same time, a database was developed with the necessary characteristics for the functioning of the neural network. |
| id |
ITEGAM_8a8539884c8a98f9e437b16caad2f570 |
|---|---|
| oai_identifier_str |
oai:ojs.itegam-jetia.org:article/1109 |
| network_acronym_str |
ITEGAM |
| network_name_str |
ITEGAM-JETIA |
| repository_id_str |
|
| spelling |
Detection of traffic accidents using artificial intelligenceDetección de accidentes de tráfico mediante inteligencia artificialDetecção de acidentes de trânsito usando inteligência artificialThis article analyzes different architectures with which a neural network can be developed using computer vision with the objective of detecting traffic accidents. For the development of the software, the Java Script programming language was used, reaching the conclusion that the best architecture to use is a Convolutional Neural Network since it has the capabilities of detecting features within the images. At the same time, a database was developed with the necessary characteristics for the functioning of the neural network.Este artículo analiza diferentes arquitecturas con las que se puede desarrollar una red neuronal mediante visión por ordenador con el objetivo de detectar accidentes de tráfico. Para el desarrollo del software se utilizó el lenguaje de programación Java Script, llegando a la conclusión que la mejor arquitectura a utilizar es una Red Neural Convolucional ya que tiene la capacidad de detectar características dentro de las imágenes. Paralelamente se desarrolló una base de datos con las características necesarias para el funcionamiento de la red neuronal.Este artigo analisa diferentes arquiteturas com as quais uma rede neural pode ser desenvolvida utilizando visão computacional com o objetivo de detectar acidentes de trânsito. Para o desenvolvimento do software foi utilizada a linguagem de programação Java Script, chegando-se à conclusão de que a melhor arquitetura a ser utilizada é uma Rede Neural Convolucional, pois possui capacidade de detectar características dentro das imagens. Paralelamente, foi desenvolvida uma base de dados com as características necessárias ao funcionamento da rede neural.ITEGAM - Instituto de Tecnologia e Educação Galileo da Amazônia2024-04-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPeer-reviewed Articleapplication/pdfhttps://itegam-jetia.org/journal/index.php/jetia/article/view/110910.5935/jetia.v10i46.1109ITEGAM-JETIA; v.10 n.46 2024; 15-21ITEGAM-JETIA; v.10 n.46 2024; 15-21ITEGAM-JETIA; v.10 n.46 2024; 15-212447-022810.5935/jetia.v10i46reponame:ITEGAM-JETIAinstname:Instituto de Tecnologia e Educação Galileo da Amazônia (ITEGAM)instacron:ITEGAMenghttps://itegam-jetia.org/journal/index.php/jetia/article/view/1109/599Copyright (c) 2024 ITEGAM-JETIAinfo:eu-repo/semantics/openAccessSánchez, Jesus Gerardo ÁvilaMonteagudo, Francisco Eneldo LópezRuiz, Francisco Javier MartinezRodríguez, Leticia del Carmen Ríos2024-04-30T16:14:45Zoai:ojs.itegam-jetia.org:article/1109Revistahttps://itegam-jetia.org/journal/index.php/jetiaPRIhttps://itegam-jetia.org/journal/index.php/jetia/oaieditor@itegam-jetia.orgopendoar:2024-04-30T16:14:45ITEGAM-JETIA - Instituto de Tecnologia e Educação Galileo da Amazônia (ITEGAM)false |
| dc.title.none.fl_str_mv |
Detection of traffic accidents using artificial intelligence Detección de accidentes de tráfico mediante inteligencia artificial Detecção de acidentes de trânsito usando inteligência artificial |
| title |
Detection of traffic accidents using artificial intelligence |
| spellingShingle |
Detection of traffic accidents using artificial intelligence Sánchez, Jesus Gerardo Ávila |
| title_short |
Detection of traffic accidents using artificial intelligence |
| title_full |
Detection of traffic accidents using artificial intelligence |
| title_fullStr |
Detection of traffic accidents using artificial intelligence |
| title_full_unstemmed |
Detection of traffic accidents using artificial intelligence |
| title_sort |
Detection of traffic accidents using artificial intelligence |
| author |
Sánchez, Jesus Gerardo Ávila |
| author_facet |
Sánchez, Jesus Gerardo Ávila Monteagudo, Francisco Eneldo López Ruiz, Francisco Javier Martinez Rodríguez, Leticia del Carmen Ríos |
| author_role |
author |
| author2 |
Monteagudo, Francisco Eneldo López Ruiz, Francisco Javier Martinez Rodríguez, Leticia del Carmen Ríos |
| author2_role |
author author author |
| dc.contributor.author.fl_str_mv |
Sánchez, Jesus Gerardo Ávila Monteagudo, Francisco Eneldo López Ruiz, Francisco Javier Martinez Rodríguez, Leticia del Carmen Ríos |
| description |
This article analyzes different architectures with which a neural network can be developed using computer vision with the objective of detecting traffic accidents. For the development of the software, the Java Script programming language was used, reaching the conclusion that the best architecture to use is a Convolutional Neural Network since it has the capabilities of detecting features within the images. At the same time, a database was developed with the necessary characteristics for the functioning of the neural network. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-04-30 |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Peer-reviewed Article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://itegam-jetia.org/journal/index.php/jetia/article/view/1109 10.5935/jetia.v10i46.1109 |
| url |
https://itegam-jetia.org/journal/index.php/jetia/article/view/1109 |
| identifier_str_mv |
10.5935/jetia.v10i46.1109 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
https://itegam-jetia.org/journal/index.php/jetia/article/view/1109/599 |
| dc.rights.driver.fl_str_mv |
Copyright (c) 2024 ITEGAM-JETIA info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Copyright (c) 2024 ITEGAM-JETIA |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
ITEGAM - Instituto de Tecnologia e Educação Galileo da Amazônia |
| publisher.none.fl_str_mv |
ITEGAM - Instituto de Tecnologia e Educação Galileo da Amazônia |
| dc.source.none.fl_str_mv |
ITEGAM-JETIA; v.10 n.46 2024; 15-21 ITEGAM-JETIA; v.10 n.46 2024; 15-21 ITEGAM-JETIA; v.10 n.46 2024; 15-21 2447-0228 10.5935/jetia.v10i46 reponame:ITEGAM-JETIA instname:Instituto de Tecnologia e Educação Galileo da Amazônia (ITEGAM) instacron:ITEGAM |
| instname_str |
Instituto de Tecnologia e Educação Galileo da Amazônia (ITEGAM) |
| instacron_str |
ITEGAM |
| institution |
ITEGAM |
| reponame_str |
ITEGAM-JETIA |
| collection |
ITEGAM-JETIA |
| repository.name.fl_str_mv |
ITEGAM-JETIA - Instituto de Tecnologia e Educação Galileo da Amazônia (ITEGAM) |
| repository.mail.fl_str_mv |
editor@itegam-jetia.org |
| _version_ |
1837010819520397312 |