Mine subsidence prediction using gene expression programming based on multivariable symbolic regression

Detalhes bibliográficos
Autor(a) principal: Rasouli, Hadi
Data de Publicação: 2021
Outros Autores: Shahriar, Kourosh, Madani, Sayyed Hasan
Tipo de documento: Artigo
Idioma: eng
Título da fonte: ITEGAM-JETIA
Texto Completo: https://itegam-jetia.org/journal/index.php/jetia/article/view/755
Resumo: Accurate prediction of surface subsidence becomes a significant challenge for active industrial companies in coal mining fields due to the importance of the economic impacts of longwall mining-induced subsidence. This article explores a new variant of genetic programming, namely gene expression programming (GEP). The GEP-based method is utilized to present a new mathematical formula for subsidence prediction in longwall coal mining. The derived model includes both geometrical and geological variables. The data set consists of field measurements obtained through 37 longwall panels of Ulan coal mine, NSW, Australia. The GEP-based model concluded satisfactory subsidence prediction outcomes compared to other empirical methods such as NCB, DMR, ACARP, and IPM. The predictive ability of the GEP-based models, which captures the complex nonlinear effects of the critical factors on the magnitude of subsidence, resulted in a statistically significant improvement in predictive capacity compared to the aforementioned empirical methods. The sensitivity analysis results indicated that Panel width and cover thickness with 31% and 23% were the most influential parameters in the proposed model. Also, the extracted seam thickness, thick layer location, and thick layer thickness had 19%, 16%, and 11% impact on the GEP proposed model, respectively.
id ITEGAM_1ec77a56a74e10b1265b04f139b21709
oai_identifier_str oai:ojs.itegam-jetia.org:article/755
network_acronym_str ITEGAM
network_name_str ITEGAM-JETIA
repository_id_str
spelling Mine subsidence prediction using gene expression programming based on multivariable symbolic regressionPredicción de hundimiento de minas mediante programación de expresión génica basada en regresión simbólica multivariablePrevisão de subsidência de minas usando programação de expressão gênica baseada em regressão simbólica multivariávelAccurate prediction of surface subsidence becomes a significant challenge for active industrial companies in coal mining fields due to the importance of the economic impacts of longwall mining-induced subsidence. This article explores a new variant of genetic programming, namely gene expression programming (GEP). The GEP-based method is utilized to present a new mathematical formula for subsidence prediction in longwall coal mining. The derived model includes both geometrical and geological variables. The data set consists of field measurements obtained through 37 longwall panels of Ulan coal mine, NSW, Australia. The GEP-based model concluded satisfactory subsidence prediction outcomes compared to other empirical methods such as NCB, DMR, ACARP, and IPM. The predictive ability of the GEP-based models, which captures the complex nonlinear effects of the critical factors on the magnitude of subsidence, resulted in a statistically significant improvement in predictive capacity compared to the aforementioned empirical methods. The sensitivity analysis results indicated that Panel width and cover thickness with 31% and 23% were the most influential parameters in the proposed model. Also, the extracted seam thickness, thick layer location, and thick layer thickness had 19%, 16%, and 11% impact on the GEP proposed model, respectively.La predicción precisa del hundimiento de la superficie se convierte en un desafío importante para las empresas industriales activas en los campos de la minería del carbón debido a la importancia de los impactos económicos del hundimiento inducido por la minería de tajo largo. Este artículo explora una nueva variante de la programación genética, la programación de la expresión génica (GEP). El método basado en GEP se utiliza para presentar una nueva fórmula matemática para la predicción de hundimientos en la minería de carbón de tajo largo. El modelo derivado incluye variables tanto geométricas como geológicas. El conjunto de datos consta de mediciones de campo obtenidas a través de 37 paneles de tajo largo de la mina de carbón Ulan, NSW, Australia. El modelo basado en GEP concluyó resultados satisfactorios de predicción de subsidencia en comparación con otros métodos empíricos como NCB, DMR, ACARP e IPM. La capacidad predictiva de los modelos basados ​​en GEP, que captura los efectos complejos no lineales de los factores críticos sobre la magnitud del hundimiento, resultó en una mejora estadísticamente significativa en la capacidad predictiva en comparación con los métodos empíricos antes mencionados. Los resultados del análisis de sensibilidad indicaron que el ancho del panel y el espesor de la cubierta con 31% y 23% fueron los parámetros más influyentes en el modelo propuesto. Además, el grosor de la costura extraída, la ubicación de la capa gruesa y el grosor de la capa gruesa tuvieron un impacto del 19%, 16% y 11% en el modelo propuesto por GEP, respectivamente.A previsão precisa de subsidência de superfície torna-se um desafio significativo para empresas industriais ativas em campos de mineração de carvão devido à importância dos impactos econômicos da subsidência induzida por mineração longwall. Este artigo explora uma nova variante da programação genética, a saber, a programação de expressão gênica (GEP). O método baseado em GEP é utilizado para apresentar uma nova fórmula matemática para previsão de subsidência na mineração de carvão longwall. O modelo derivado inclui variáveis ​​geométricas e geológicas. O conjunto de dados consiste em medições de campo obtidas através de 37 painéis longwall da mina de carvão Ulan, NSW, Austrália. O modelo baseado em GEP concluiu resultados de previsão de subsidência satisfatórios em comparação com outros métodos empíricos, como NCB, DMR, ACARP e IPM. A capacidade preditiva dos modelos baseados no GEP, que captura os efeitos não lineares complexos dos fatores críticos sobre a magnitude da subsidência, resultou em uma melhora estatisticamente significativa na capacidade preditiva em comparação com os métodos empíricos mencionados. Os resultados da análise de sensibilidade indicaram que a largura do painel e a espessura da cobertura com 31% e 23% foram os parâmetros mais influentes no modelo proposto. Além disso, a espessura da emenda extraída, a localização da camada espessa e a espessura da camada espessa tiveram 19%, 16% e 11% de impacto no modelo proposto pelo GEP, respectivamente.ITEGAM - Instituto de Tecnologia e Educação Galileo da Amazônia2021-06-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPeer-reviewed Articleapplication/pdfhttps://itegam-jetia.org/journal/index.php/jetia/article/view/75510.5935/jetia.v7i29.755ITEGAM-JETIA; v.7 n.29 2021; 13-24ITEGAM-JETIA; v.7 n.29 2021; 13-24ITEGAM-JETIA; v.7 n.29 2021; 13-242447-022810.5935/jetia.v7i29reponame:ITEGAM-JETIAinstname:Instituto de Tecnologia e Educação Galileo da Amazônia (ITEGAM)instacron:ITEGAMenghttps://itegam-jetia.org/journal/index.php/jetia/article/view/755/491Rasouli, HadiShahriar, KouroshMadani, Sayyed Hasaninfo:eu-repo/semantics/openAccess2021-07-01T00:13:52Zoai:ojs.itegam-jetia.org:article/755Revistahttps://itegam-jetia.org/journal/index.php/jetiaPRIhttps://itegam-jetia.org/journal/index.php/jetia/oaieditor@itegam-jetia.orgopendoar:2021-07-01T00:13:52ITEGAM-JETIA - Instituto de Tecnologia e Educação Galileo da Amazônia (ITEGAM)false
dc.title.none.fl_str_mv Mine subsidence prediction using gene expression programming based on multivariable symbolic regression
Predicción de hundimiento de minas mediante programación de expresión génica basada en regresión simbólica multivariable
Previsão de subsidência de minas usando programação de expressão gênica baseada em regressão simbólica multivariável
title Mine subsidence prediction using gene expression programming based on multivariable symbolic regression
spellingShingle Mine subsidence prediction using gene expression programming based on multivariable symbolic regression
Rasouli, Hadi
title_short Mine subsidence prediction using gene expression programming based on multivariable symbolic regression
title_full Mine subsidence prediction using gene expression programming based on multivariable symbolic regression
title_fullStr Mine subsidence prediction using gene expression programming based on multivariable symbolic regression
title_full_unstemmed Mine subsidence prediction using gene expression programming based on multivariable symbolic regression
title_sort Mine subsidence prediction using gene expression programming based on multivariable symbolic regression
author Rasouli, Hadi
author_facet Rasouli, Hadi
Shahriar, Kourosh
Madani, Sayyed Hasan
author_role author
author2 Shahriar, Kourosh
Madani, Sayyed Hasan
author2_role author
author
dc.contributor.author.fl_str_mv Rasouli, Hadi
Shahriar, Kourosh
Madani, Sayyed Hasan
description Accurate prediction of surface subsidence becomes a significant challenge for active industrial companies in coal mining fields due to the importance of the economic impacts of longwall mining-induced subsidence. This article explores a new variant of genetic programming, namely gene expression programming (GEP). The GEP-based method is utilized to present a new mathematical formula for subsidence prediction in longwall coal mining. The derived model includes both geometrical and geological variables. The data set consists of field measurements obtained through 37 longwall panels of Ulan coal mine, NSW, Australia. The GEP-based model concluded satisfactory subsidence prediction outcomes compared to other empirical methods such as NCB, DMR, ACARP, and IPM. The predictive ability of the GEP-based models, which captures the complex nonlinear effects of the critical factors on the magnitude of subsidence, resulted in a statistically significant improvement in predictive capacity compared to the aforementioned empirical methods. The sensitivity analysis results indicated that Panel width and cover thickness with 31% and 23% were the most influential parameters in the proposed model. Also, the extracted seam thickness, thick layer location, and thick layer thickness had 19%, 16%, and 11% impact on the GEP proposed model, respectively.
publishDate 2021
dc.date.none.fl_str_mv 2021-06-30
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Peer-reviewed Article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://itegam-jetia.org/journal/index.php/jetia/article/view/755
10.5935/jetia.v7i29.755
url https://itegam-jetia.org/journal/index.php/jetia/article/view/755
identifier_str_mv 10.5935/jetia.v7i29.755
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://itegam-jetia.org/journal/index.php/jetia/article/view/755/491
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv ITEGAM - Instituto de Tecnologia e Educação Galileo da Amazônia
publisher.none.fl_str_mv ITEGAM - Instituto de Tecnologia e Educação Galileo da Amazônia
dc.source.none.fl_str_mv ITEGAM-JETIA; v.7 n.29 2021; 13-24
ITEGAM-JETIA; v.7 n.29 2021; 13-24
ITEGAM-JETIA; v.7 n.29 2021; 13-24
2447-0228
10.5935/jetia.v7i29
reponame:ITEGAM-JETIA
instname:Instituto de Tecnologia e Educação Galileo da Amazônia (ITEGAM)
instacron:ITEGAM
instname_str Instituto de Tecnologia e Educação Galileo da Amazônia (ITEGAM)
instacron_str ITEGAM
institution ITEGAM
reponame_str ITEGAM-JETIA
collection ITEGAM-JETIA
repository.name.fl_str_mv ITEGAM-JETIA - Instituto de Tecnologia e Educação Galileo da Amazônia (ITEGAM)
repository.mail.fl_str_mv editor@itegam-jetia.org
_version_ 1837010818676293632