Mine subsidence prediction using gene expression programming based on multivariable symbolic regression
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2021 |
| Outros Autores: | , |
| Tipo de documento: | Artigo |
| Idioma: | eng |
| Título da fonte: | ITEGAM-JETIA |
| Texto Completo: | https://itegam-jetia.org/journal/index.php/jetia/article/view/755 |
Resumo: | Accurate prediction of surface subsidence becomes a significant challenge for active industrial companies in coal mining fields due to the importance of the economic impacts of longwall mining-induced subsidence. This article explores a new variant of genetic programming, namely gene expression programming (GEP). The GEP-based method is utilized to present a new mathematical formula for subsidence prediction in longwall coal mining. The derived model includes both geometrical and geological variables. The data set consists of field measurements obtained through 37 longwall panels of Ulan coal mine, NSW, Australia. The GEP-based model concluded satisfactory subsidence prediction outcomes compared to other empirical methods such as NCB, DMR, ACARP, and IPM. The predictive ability of the GEP-based models, which captures the complex nonlinear effects of the critical factors on the magnitude of subsidence, resulted in a statistically significant improvement in predictive capacity compared to the aforementioned empirical methods. The sensitivity analysis results indicated that Panel width and cover thickness with 31% and 23% were the most influential parameters in the proposed model. Also, the extracted seam thickness, thick layer location, and thick layer thickness had 19%, 16%, and 11% impact on the GEP proposed model, respectively. |
| id |
ITEGAM_1ec77a56a74e10b1265b04f139b21709 |
|---|---|
| oai_identifier_str |
oai:ojs.itegam-jetia.org:article/755 |
| network_acronym_str |
ITEGAM |
| network_name_str |
ITEGAM-JETIA |
| repository_id_str |
|
| spelling |
Mine subsidence prediction using gene expression programming based on multivariable symbolic regressionPredicción de hundimiento de minas mediante programación de expresión génica basada en regresión simbólica multivariablePrevisão de subsidência de minas usando programação de expressão gênica baseada em regressão simbólica multivariávelAccurate prediction of surface subsidence becomes a significant challenge for active industrial companies in coal mining fields due to the importance of the economic impacts of longwall mining-induced subsidence. This article explores a new variant of genetic programming, namely gene expression programming (GEP). The GEP-based method is utilized to present a new mathematical formula for subsidence prediction in longwall coal mining. The derived model includes both geometrical and geological variables. The data set consists of field measurements obtained through 37 longwall panels of Ulan coal mine, NSW, Australia. The GEP-based model concluded satisfactory subsidence prediction outcomes compared to other empirical methods such as NCB, DMR, ACARP, and IPM. The predictive ability of the GEP-based models, which captures the complex nonlinear effects of the critical factors on the magnitude of subsidence, resulted in a statistically significant improvement in predictive capacity compared to the aforementioned empirical methods. The sensitivity analysis results indicated that Panel width and cover thickness with 31% and 23% were the most influential parameters in the proposed model. Also, the extracted seam thickness, thick layer location, and thick layer thickness had 19%, 16%, and 11% impact on the GEP proposed model, respectively.La predicción precisa del hundimiento de la superficie se convierte en un desafío importante para las empresas industriales activas en los campos de la minería del carbón debido a la importancia de los impactos económicos del hundimiento inducido por la minería de tajo largo. Este artículo explora una nueva variante de la programación genética, la programación de la expresión génica (GEP). El método basado en GEP se utiliza para presentar una nueva fórmula matemática para la predicción de hundimientos en la minería de carbón de tajo largo. El modelo derivado incluye variables tanto geométricas como geológicas. El conjunto de datos consta de mediciones de campo obtenidas a través de 37 paneles de tajo largo de la mina de carbón Ulan, NSW, Australia. El modelo basado en GEP concluyó resultados satisfactorios de predicción de subsidencia en comparación con otros métodos empíricos como NCB, DMR, ACARP e IPM. La capacidad predictiva de los modelos basados en GEP, que captura los efectos complejos no lineales de los factores críticos sobre la magnitud del hundimiento, resultó en una mejora estadísticamente significativa en la capacidad predictiva en comparación con los métodos empíricos antes mencionados. Los resultados del análisis de sensibilidad indicaron que el ancho del panel y el espesor de la cubierta con 31% y 23% fueron los parámetros más influyentes en el modelo propuesto. Además, el grosor de la costura extraída, la ubicación de la capa gruesa y el grosor de la capa gruesa tuvieron un impacto del 19%, 16% y 11% en el modelo propuesto por GEP, respectivamente.A previsão precisa de subsidência de superfície torna-se um desafio significativo para empresas industriais ativas em campos de mineração de carvão devido à importância dos impactos econômicos da subsidência induzida por mineração longwall. Este artigo explora uma nova variante da programação genética, a saber, a programação de expressão gênica (GEP). O método baseado em GEP é utilizado para apresentar uma nova fórmula matemática para previsão de subsidência na mineração de carvão longwall. O modelo derivado inclui variáveis geométricas e geológicas. O conjunto de dados consiste em medições de campo obtidas através de 37 painéis longwall da mina de carvão Ulan, NSW, Austrália. O modelo baseado em GEP concluiu resultados de previsão de subsidência satisfatórios em comparação com outros métodos empíricos, como NCB, DMR, ACARP e IPM. A capacidade preditiva dos modelos baseados no GEP, que captura os efeitos não lineares complexos dos fatores críticos sobre a magnitude da subsidência, resultou em uma melhora estatisticamente significativa na capacidade preditiva em comparação com os métodos empíricos mencionados. Os resultados da análise de sensibilidade indicaram que a largura do painel e a espessura da cobertura com 31% e 23% foram os parâmetros mais influentes no modelo proposto. Além disso, a espessura da emenda extraída, a localização da camada espessa e a espessura da camada espessa tiveram 19%, 16% e 11% de impacto no modelo proposto pelo GEP, respectivamente.ITEGAM - Instituto de Tecnologia e Educação Galileo da Amazônia2021-06-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPeer-reviewed Articleapplication/pdfhttps://itegam-jetia.org/journal/index.php/jetia/article/view/75510.5935/jetia.v7i29.755ITEGAM-JETIA; v.7 n.29 2021; 13-24ITEGAM-JETIA; v.7 n.29 2021; 13-24ITEGAM-JETIA; v.7 n.29 2021; 13-242447-022810.5935/jetia.v7i29reponame:ITEGAM-JETIAinstname:Instituto de Tecnologia e Educação Galileo da Amazônia (ITEGAM)instacron:ITEGAMenghttps://itegam-jetia.org/journal/index.php/jetia/article/view/755/491Rasouli, HadiShahriar, KouroshMadani, Sayyed Hasaninfo:eu-repo/semantics/openAccess2021-07-01T00:13:52Zoai:ojs.itegam-jetia.org:article/755Revistahttps://itegam-jetia.org/journal/index.php/jetiaPRIhttps://itegam-jetia.org/journal/index.php/jetia/oaieditor@itegam-jetia.orgopendoar:2021-07-01T00:13:52ITEGAM-JETIA - Instituto de Tecnologia e Educação Galileo da Amazônia (ITEGAM)false |
| dc.title.none.fl_str_mv |
Mine subsidence prediction using gene expression programming based on multivariable symbolic regression Predicción de hundimiento de minas mediante programación de expresión génica basada en regresión simbólica multivariable Previsão de subsidência de minas usando programação de expressão gênica baseada em regressão simbólica multivariável |
| title |
Mine subsidence prediction using gene expression programming based on multivariable symbolic regression |
| spellingShingle |
Mine subsidence prediction using gene expression programming based on multivariable symbolic regression Rasouli, Hadi |
| title_short |
Mine subsidence prediction using gene expression programming based on multivariable symbolic regression |
| title_full |
Mine subsidence prediction using gene expression programming based on multivariable symbolic regression |
| title_fullStr |
Mine subsidence prediction using gene expression programming based on multivariable symbolic regression |
| title_full_unstemmed |
Mine subsidence prediction using gene expression programming based on multivariable symbolic regression |
| title_sort |
Mine subsidence prediction using gene expression programming based on multivariable symbolic regression |
| author |
Rasouli, Hadi |
| author_facet |
Rasouli, Hadi Shahriar, Kourosh Madani, Sayyed Hasan |
| author_role |
author |
| author2 |
Shahriar, Kourosh Madani, Sayyed Hasan |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Rasouli, Hadi Shahriar, Kourosh Madani, Sayyed Hasan |
| description |
Accurate prediction of surface subsidence becomes a significant challenge for active industrial companies in coal mining fields due to the importance of the economic impacts of longwall mining-induced subsidence. This article explores a new variant of genetic programming, namely gene expression programming (GEP). The GEP-based method is utilized to present a new mathematical formula for subsidence prediction in longwall coal mining. The derived model includes both geometrical and geological variables. The data set consists of field measurements obtained through 37 longwall panels of Ulan coal mine, NSW, Australia. The GEP-based model concluded satisfactory subsidence prediction outcomes compared to other empirical methods such as NCB, DMR, ACARP, and IPM. The predictive ability of the GEP-based models, which captures the complex nonlinear effects of the critical factors on the magnitude of subsidence, resulted in a statistically significant improvement in predictive capacity compared to the aforementioned empirical methods. The sensitivity analysis results indicated that Panel width and cover thickness with 31% and 23% were the most influential parameters in the proposed model. Also, the extracted seam thickness, thick layer location, and thick layer thickness had 19%, 16%, and 11% impact on the GEP proposed model, respectively. |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-06-30 |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Peer-reviewed Article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://itegam-jetia.org/journal/index.php/jetia/article/view/755 10.5935/jetia.v7i29.755 |
| url |
https://itegam-jetia.org/journal/index.php/jetia/article/view/755 |
| identifier_str_mv |
10.5935/jetia.v7i29.755 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
https://itegam-jetia.org/journal/index.php/jetia/article/view/755/491 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
ITEGAM - Instituto de Tecnologia e Educação Galileo da Amazônia |
| publisher.none.fl_str_mv |
ITEGAM - Instituto de Tecnologia e Educação Galileo da Amazônia |
| dc.source.none.fl_str_mv |
ITEGAM-JETIA; v.7 n.29 2021; 13-24 ITEGAM-JETIA; v.7 n.29 2021; 13-24 ITEGAM-JETIA; v.7 n.29 2021; 13-24 2447-0228 10.5935/jetia.v7i29 reponame:ITEGAM-JETIA instname:Instituto de Tecnologia e Educação Galileo da Amazônia (ITEGAM) instacron:ITEGAM |
| instname_str |
Instituto de Tecnologia e Educação Galileo da Amazônia (ITEGAM) |
| instacron_str |
ITEGAM |
| institution |
ITEGAM |
| reponame_str |
ITEGAM-JETIA |
| collection |
ITEGAM-JETIA |
| repository.name.fl_str_mv |
ITEGAM-JETIA - Instituto de Tecnologia e Educação Galileo da Amazônia (ITEGAM) |
| repository.mail.fl_str_mv |
editor@itegam-jetia.org |
| _version_ |
1837010818676293632 |