Trajectory and attitude modeling and propagation for reentry debris with fragmentation implementing voxels meshs

Bibliographic Details
Main Author: Jhonathan Orlando Murcia Piñeros
Publication Date: 2018
Format: Doctoral thesis
Language: eng
Source: Biblioteca Digital de Teses e Dissertações do INPE
Download full: http://urlib.net/sid.inpe.br/mtc-m21c/2018/05.02.13.07
Summary: Actually, more than 17.000 objects are in orbit around the Earth, with an estimated total mass of 6.500.000 kg. All of them with dimensions superior to 10 cm and some orbiting without control. In other words, they are orbital debris. In orbit, the debris represents a hazard to operational satellites and aerospace operations due to the high probability of collisions. With the exponential increment of space activities and without regulations it is expected a proportional increment in the debris population and an increase the risk for the space activities. Because the interaction of the debris with the atmosphere of the Earth and the solar activity, the debris began to lose energy and decay. During the de-orbit process, the debris fall into the Earths atmosphere at hypersonic speeds and these objects can be break-up and/or fragmented due to the aerodynamics, thermal and structural loads. It is important to obtain the trajectory and attitude of any fragment to determine the possible survival mass, impact area, hazard conditions and risk to the population, the air traffic control, and infrastructure. Different computational tools are used to determine the impact of the debris during reentry. These tools implement different models complemented with data from observations and laboratories. In this case, it is proposed a computational code to integrate the equations of motion and to propagate the dynamics and kinematics of the possible survival fragments. The new model implements the voxel method to determine the aerodynamic conditions and the fragmentation of the body. It is also analyzed the results of trajectories with six degrees of freedom, atmospheric winds, and Magnus effect. The mathematical model and computational code are validated in three degrees of freedom. Results are compared with data from other computational tools available in the scientific literature. The results show a good approximation with the report cases of study. New results are generated in the simulations of rotational bodies, due to the influence of aerodynamic forces in the trajectory and the changes in the stagnation regions. Because the implementation of wind and rotation of the debris, the fragments increased the survivability and the dispersion area. These information confirm the initial hypothesis and increases the applications of the actual tool in future reentry predictions.
id INPE_b32404f437576e24febb71e664a2d4a0
oai_identifier_str oai:urlib.net:sid.inpe.br/mtc-m21c/2018/05.02.13.07.51-0
network_acronym_str INPE
network_name_str Biblioteca Digital de Teses e Dissertações do INPE
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisTrajectory and attitude modeling and propagation for reentry debris with fragmentation implementing voxels meshsModelamento e propagação da trajetória e atitude de detritos espaciais com fragmentação implementando uma malha de voxels2018-04-27Antonio Fernando Bertachini de Almeida PradoUlisses Tadeu Vieira GuedesVivian Martins GomesFrancisco das Chagas CarvalhoJhonathan Orlando Murcia PiñerosInstituto Nacional de Pesquisas Espaciais (INPE)Programa de Pós-Graduação do INPE em Mecânica Espacial e ControleINPEBRreentradatrajetóriafragmentaçãoseis graus de liberdadedetritos espaciaisfragmentationreentrysix degrees of freedomtrajectoryorbital debrisActually, more than 17.000 objects are in orbit around the Earth, with an estimated total mass of 6.500.000 kg. All of them with dimensions superior to 10 cm and some orbiting without control. In other words, they are orbital debris. In orbit, the debris represents a hazard to operational satellites and aerospace operations due to the high probability of collisions. With the exponential increment of space activities and without regulations it is expected a proportional increment in the debris population and an increase the risk for the space activities. Because the interaction of the debris with the atmosphere of the Earth and the solar activity, the debris began to lose energy and decay. During the de-orbit process, the debris fall into the Earths atmosphere at hypersonic speeds and these objects can be break-up and/or fragmented due to the aerodynamics, thermal and structural loads. It is important to obtain the trajectory and attitude of any fragment to determine the possible survival mass, impact area, hazard conditions and risk to the population, the air traffic control, and infrastructure. Different computational tools are used to determine the impact of the debris during reentry. These tools implement different models complemented with data from observations and laboratories. In this case, it is proposed a computational code to integrate the equations of motion and to propagate the dynamics and kinematics of the possible survival fragments. The new model implements the voxel method to determine the aerodynamic conditions and the fragmentation of the body. It is also analyzed the results of trajectories with six degrees of freedom, atmospheric winds, and Magnus effect. The mathematical model and computational code are validated in three degrees of freedom. Results are compared with data from other computational tools available in the scientific literature. The results show a good approximation with the report cases of study. New results are generated in the simulations of rotational bodies, due to the influence of aerodynamic forces in the trajectory and the changes in the stagnation regions. Because the implementation of wind and rotation of the debris, the fragments increased the survivability and the dispersion area. These information confirm the initial hypothesis and increases the applications of the actual tool in future reentry predictions.Atualmente, mais de 17.000 objetos orbitam em torno da Terra, com uma estimativa de massa superior a 6.500.000 kg. Todos eles com dimensões superiores a 10 cm e alguns orbitando sem controle, também conhecidos como detritos espaciais. Na órbita, os detritos representam risco para satélites operacionais e para as operações aeroespaciais porque aumentam as probabilidades de colisões. Com o incremento exponencial das atividades espaciais e a ausência de regulamentos, espera-se um incremento proporcional na população de detritos e o aumento do risco das atividades espaciais. A interação dos detritos com a atmosfera da Terra e a atividade solar fazem com que os detritos comecem a perder energia gerando o decaimento da orbita. Durante o processo de decaimento, os detritos caem na atmosfera da Terra a velocidades hipersônicas e podem ser quebrados e/ou fragmentados pelas cargas aerodinâmicas, térmicas e estruturais. É importante obter a trajetória e a atitude de qualquer fragmento para determinar a possível massa final, a área de impacto, condições de perigo e risco para a população, para o controle de tráfego aéreo e para a infraestrutura em terra. Diferentes ferramentas computacionais são implementadas para determinar o impacto dos detritos durante a reentrada. Qualquer uma dessas ferramentas implementa diferentes modelos matemáticos complementados com dados de observações e laboratórios. Neste caso, propõe-se um código computacional para integrar as equações de movimento e propagar a dinâmica e a cinemática dos possíveis fragmentos que conseguem sobreviver a reentrada. O modelo proposto implementa o método de voxels para determinar as condições aerodinâmicas e a fragmentação dentro do corpo, analisando os resultados de trajetórias com seis graus de liberdade, ventos atmosféricos e efeito Magnus. O modelo matemático e o código computacional são validados em três graus de liberdade. Os resultados foram comparados com dados de outras ferramentas computacionais disponíveis na literatura científica. Os resultados mostram uma boa aproximação com os casos estudados. Novos resultados foram gerados nas simulações de corpos rotativos e pode-se observar a influência das forças aerodinâmicas na trajetória e as mudanças nas regiões de estagnação dos fragmentos. Com a implementação do vento e a rotação dos detritos, os fragmentos aumentaram a capacidade de sobrevivência e a área de dispersão. Essas informações confirmam a hipótese inicial e aumentam as aplicações da ferramenta real em futuras previsões de reentrada.http://urlib.net/sid.inpe.br/mtc-m21c/2018/05.02.13.07info:eu-repo/semantics/openAccessengreponame:Biblioteca Digital de Teses e Dissertações do INPEinstname:Instituto Nacional de Pesquisas Espaciais (INPE)instacron:INPE2021-07-31T06:55:45Zoai:urlib.net:sid.inpe.br/mtc-m21c/2018/05.02.13.07.51-0Biblioteca Digital de Teses e Dissertaçõeshttp://bibdigital.sid.inpe.br/PUBhttp://bibdigital.sid.inpe.br/col/iconet.com.br/banon/2003/11.21.21.08/doc/oai.cgiopendoar:32772021-07-31 06:55:45.683Biblioteca Digital de Teses e Dissertações do INPE - Instituto Nacional de Pesquisas Espaciais (INPE)false
dc.title.en.fl_str_mv Trajectory and attitude modeling and propagation for reentry debris with fragmentation implementing voxels meshs
dc.title.alternative.pt.fl_str_mv Modelamento e propagação da trajetória e atitude de detritos espaciais com fragmentação implementando uma malha de voxels
title Trajectory and attitude modeling and propagation for reentry debris with fragmentation implementing voxels meshs
spellingShingle Trajectory and attitude modeling and propagation for reentry debris with fragmentation implementing voxels meshs
Jhonathan Orlando Murcia Piñeros
title_short Trajectory and attitude modeling and propagation for reentry debris with fragmentation implementing voxels meshs
title_full Trajectory and attitude modeling and propagation for reentry debris with fragmentation implementing voxels meshs
title_fullStr Trajectory and attitude modeling and propagation for reentry debris with fragmentation implementing voxels meshs
title_full_unstemmed Trajectory and attitude modeling and propagation for reentry debris with fragmentation implementing voxels meshs
title_sort Trajectory and attitude modeling and propagation for reentry debris with fragmentation implementing voxels meshs
author Jhonathan Orlando Murcia Piñeros
author_facet Jhonathan Orlando Murcia Piñeros
author_role author
dc.contributor.advisor1.fl_str_mv Antonio Fernando Bertachini de Almeida Prado
dc.contributor.advisor2.fl_str_mv Ulisses Tadeu Vieira Guedes
dc.contributor.referee1.fl_str_mv Vivian Martins Gomes
dc.contributor.referee2.fl_str_mv Francisco das Chagas Carvalho
dc.contributor.author.fl_str_mv Jhonathan Orlando Murcia Piñeros
contributor_str_mv Antonio Fernando Bertachini de Almeida Prado
Ulisses Tadeu Vieira Guedes
Vivian Martins Gomes
Francisco das Chagas Carvalho
dc.description.abstract.por.fl_txt_mv Actually, more than 17.000 objects are in orbit around the Earth, with an estimated total mass of 6.500.000 kg. All of them with dimensions superior to 10 cm and some orbiting without control. In other words, they are orbital debris. In orbit, the debris represents a hazard to operational satellites and aerospace operations due to the high probability of collisions. With the exponential increment of space activities and without regulations it is expected a proportional increment in the debris population and an increase the risk for the space activities. Because the interaction of the debris with the atmosphere of the Earth and the solar activity, the debris began to lose energy and decay. During the de-orbit process, the debris fall into the Earths atmosphere at hypersonic speeds and these objects can be break-up and/or fragmented due to the aerodynamics, thermal and structural loads. It is important to obtain the trajectory and attitude of any fragment to determine the possible survival mass, impact area, hazard conditions and risk to the population, the air traffic control, and infrastructure. Different computational tools are used to determine the impact of the debris during reentry. These tools implement different models complemented with data from observations and laboratories. In this case, it is proposed a computational code to integrate the equations of motion and to propagate the dynamics and kinematics of the possible survival fragments. The new model implements the voxel method to determine the aerodynamic conditions and the fragmentation of the body. It is also analyzed the results of trajectories with six degrees of freedom, atmospheric winds, and Magnus effect. The mathematical model and computational code are validated in three degrees of freedom. Results are compared with data from other computational tools available in the scientific literature. The results show a good approximation with the report cases of study. New results are generated in the simulations of rotational bodies, due to the influence of aerodynamic forces in the trajectory and the changes in the stagnation regions. Because the implementation of wind and rotation of the debris, the fragments increased the survivability and the dispersion area. These information confirm the initial hypothesis and increases the applications of the actual tool in future reentry predictions.
Atualmente, mais de 17.000 objetos orbitam em torno da Terra, com uma estimativa de massa superior a 6.500.000 kg. Todos eles com dimensões superiores a 10 cm e alguns orbitando sem controle, também conhecidos como detritos espaciais. Na órbita, os detritos representam risco para satélites operacionais e para as operações aeroespaciais porque aumentam as probabilidades de colisões. Com o incremento exponencial das atividades espaciais e a ausência de regulamentos, espera-se um incremento proporcional na população de detritos e o aumento do risco das atividades espaciais. A interação dos detritos com a atmosfera da Terra e a atividade solar fazem com que os detritos comecem a perder energia gerando o decaimento da orbita. Durante o processo de decaimento, os detritos caem na atmosfera da Terra a velocidades hipersônicas e podem ser quebrados e/ou fragmentados pelas cargas aerodinâmicas, térmicas e estruturais. É importante obter a trajetória e a atitude de qualquer fragmento para determinar a possível massa final, a área de impacto, condições de perigo e risco para a população, para o controle de tráfego aéreo e para a infraestrutura em terra. Diferentes ferramentas computacionais são implementadas para determinar o impacto dos detritos durante a reentrada. Qualquer uma dessas ferramentas implementa diferentes modelos matemáticos complementados com dados de observações e laboratórios. Neste caso, propõe-se um código computacional para integrar as equações de movimento e propagar a dinâmica e a cinemática dos possíveis fragmentos que conseguem sobreviver a reentrada. O modelo proposto implementa o método de voxels para determinar as condições aerodinâmicas e a fragmentação dentro do corpo, analisando os resultados de trajetórias com seis graus de liberdade, ventos atmosféricos e efeito Magnus. O modelo matemático e o código computacional são validados em três graus de liberdade. Os resultados foram comparados com dados de outras ferramentas computacionais disponíveis na literatura científica. Os resultados mostram uma boa aproximação com os casos estudados. Novos resultados foram gerados nas simulações de corpos rotativos e pode-se observar a influência das forças aerodinâmicas na trajetória e as mudanças nas regiões de estagnação dos fragmentos. Com a implementação do vento e a rotação dos detritos, os fragmentos aumentaram a capacidade de sobrevivência e a área de dispersão. Essas informações confirmam a hipótese inicial e aumentam as aplicações da ferramenta real em futuras previsões de reentrada.
description Actually, more than 17.000 objects are in orbit around the Earth, with an estimated total mass of 6.500.000 kg. All of them with dimensions superior to 10 cm and some orbiting without control. In other words, they are orbital debris. In orbit, the debris represents a hazard to operational satellites and aerospace operations due to the high probability of collisions. With the exponential increment of space activities and without regulations it is expected a proportional increment in the debris population and an increase the risk for the space activities. Because the interaction of the debris with the atmosphere of the Earth and the solar activity, the debris began to lose energy and decay. During the de-orbit process, the debris fall into the Earths atmosphere at hypersonic speeds and these objects can be break-up and/or fragmented due to the aerodynamics, thermal and structural loads. It is important to obtain the trajectory and attitude of any fragment to determine the possible survival mass, impact area, hazard conditions and risk to the population, the air traffic control, and infrastructure. Different computational tools are used to determine the impact of the debris during reentry. These tools implement different models complemented with data from observations and laboratories. In this case, it is proposed a computational code to integrate the equations of motion and to propagate the dynamics and kinematics of the possible survival fragments. The new model implements the voxel method to determine the aerodynamic conditions and the fragmentation of the body. It is also analyzed the results of trajectories with six degrees of freedom, atmospheric winds, and Magnus effect. The mathematical model and computational code are validated in three degrees of freedom. Results are compared with data from other computational tools available in the scientific literature. The results show a good approximation with the report cases of study. New results are generated in the simulations of rotational bodies, due to the influence of aerodynamic forces in the trajectory and the changes in the stagnation regions. Because the implementation of wind and rotation of the debris, the fragments increased the survivability and the dispersion area. These information confirm the initial hypothesis and increases the applications of the actual tool in future reentry predictions.
publishDate 2018
dc.date.issued.fl_str_mv 2018-04-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
status_str publishedVersion
format doctoralThesis
dc.identifier.uri.fl_str_mv http://urlib.net/sid.inpe.br/mtc-m21c/2018/05.02.13.07
url http://urlib.net/sid.inpe.br/mtc-m21c/2018/05.02.13.07
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Instituto Nacional de Pesquisas Espaciais (INPE)
dc.publisher.program.fl_str_mv Programa de Pós-Graduação do INPE em Mecânica Espacial e Controle
dc.publisher.initials.fl_str_mv INPE
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Instituto Nacional de Pesquisas Espaciais (INPE)
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do INPE
instname:Instituto Nacional de Pesquisas Espaciais (INPE)
instacron:INPE
reponame_str Biblioteca Digital de Teses e Dissertações do INPE
collection Biblioteca Digital de Teses e Dissertações do INPE
instname_str Instituto Nacional de Pesquisas Espaciais (INPE)
instacron_str INPE
institution INPE
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do INPE - Instituto Nacional de Pesquisas Espaciais (INPE)
repository.mail.fl_str_mv
publisher_program_txtF_mv Programa de Pós-Graduação do INPE em Mecânica Espacial e Controle
contributor_advisor1_txtF_mv Antonio Fernando Bertachini de Almeida Prado
_version_ 1706809361172529152