Redes neurais artificiais em imagens para estimação da posição de um VANT

Detalhes bibliográficos
Autor(a) principal: Gustavo Augusto Mascarenhas Goltz
Data de Publicação: 2011
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações do INPE
Texto Completo: http://urlib.net/sid.inpe.br/mtc-m19/2011/04.01.13.25
Resumo: A aplicação de Veículos Aéreos Não Tripulados (VANTs) intensificou-se nos últimos tempos devido ao baixo custo operacional e de fabricação comparados às aeronaves convencionais, ausência de tripulação (aplicações em tarefas tediosas, cansativas ou que envolvem risco à tripulação), maior autonomia, entre outros fatores. A navegação aérea por imagens, capturadas em tempo real da região sobrevoada pelo VANT, é uma alternativa para a navegação autônoma destas aeronaves. As Redes Neurais Artificiais (RNAs) são ferramentas usadas com sucesso em diversas aplicações que envolvem processamento de imagens devido ao seu baixo custo computacional, tolerância a falhas e robustez ao ruído. A navegação aérea autônoma por imagens é uma aplicação com potencial para o emprego de RNAs por necessitar de processamento rápido, embarcado e tolerante a falhas. Neste contexto foram usadas três RNAs com treinamento supervisionado e de diferentes arquiteturas (rede com funções de base radial, rede perceptron de múltiplas camadas e rede neural celular) aplicadas na extração de bordas em imagens aéreas e de satélite, para posterior cálculo da correlação no domínio espacial entre as bordas dessas imagens, a fim de simular a estimação da posição geográfica de um VANT. A informação de borda neste caso é interessante por ser invariável ao tipo de sensor de imageamento (satélite e imagens aéreas). Para a aplicação, as redes neurais foram comparadas com os operadores Sobel e Canny.
id INPE_08040062bc02fa73d944d02c79f8467e
oai_identifier_str oai:urlib.net:sid.inpe.br/mtc-m19/2011/04.01.13.25.23-0
network_acronym_str INPE
network_name_str Biblioteca Digital de Teses e Dissertações do INPE
spelling info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisRedes neurais artificiais em imagens para estimação da posição de um VANTArtificial neural networks on images for UAV position estimation2011-05-06Haroldo Fraga de Campos VelhoElcio Hideiti ShiguemoriLeila Maria Garcia FonsecaLuciano Vieira DutraAntonio de Pádua BragaGustavo Augusto Mascarenhas GoltzInstituto Nacional de Pesquisas Espaciais (INPE)Programa de Pós-Graduação do INPE em Computação AplicadaINPEBRredes neurais artificiaisreconhecimento de padrões em imagensnavegação aérea autônomaprocessamento de imagensartificial neural networkspattern recognition on imagesautonomous air navigationimage processingA aplicação de Veículos Aéreos Não Tripulados (VANTs) intensificou-se nos últimos tempos devido ao baixo custo operacional e de fabricação comparados às aeronaves convencionais, ausência de tripulação (aplicações em tarefas tediosas, cansativas ou que envolvem risco à tripulação), maior autonomia, entre outros fatores. A navegação aérea por imagens, capturadas em tempo real da região sobrevoada pelo VANT, é uma alternativa para a navegação autônoma destas aeronaves. As Redes Neurais Artificiais (RNAs) são ferramentas usadas com sucesso em diversas aplicações que envolvem processamento de imagens devido ao seu baixo custo computacional, tolerância a falhas e robustez ao ruído. A navegação aérea autônoma por imagens é uma aplicação com potencial para o emprego de RNAs por necessitar de processamento rápido, embarcado e tolerante a falhas. Neste contexto foram usadas três RNAs com treinamento supervisionado e de diferentes arquiteturas (rede com funções de base radial, rede perceptron de múltiplas camadas e rede neural celular) aplicadas na extração de bordas em imagens aéreas e de satélite, para posterior cálculo da correlação no domínio espacial entre as bordas dessas imagens, a fim de simular a estimação da posição geográfica de um VANT. A informação de borda neste caso é interessante por ser invariável ao tipo de sensor de imageamento (satélite e imagens aéreas). Para a aplicação, as redes neurais foram comparadas com os operadores Sobel e Canny.The application of Unmanned Aerial Vehicles (UAVs) has intensified in recent years due to low operating cost and manufacturing compared to conventional aircraft, no crew (applications on tedious tasks, tiring, or that involve risk to the crew), more autonomy, among other factors. The navigation based on images, captured in real time of the area overflown by the UAV, is an alternative for autonomous navigation of such aircraft. Artificial Neural Networks (ANNs) are powerful tools used in various applications involving image processing due to its low computational cost, fault tolerance and robustness to noise. The autonomous navigation of images is an application for employment potential of ANNs because need fast processing, embedded code, and fault tolerance. In this context, three ANNs were approached with supervised training and different architectures (neural network radial basis function, multilayer perceptron and cellular neural network) applied in edge detection on aerial and satellite images, for later calculation of the correlation in spatial domain between these images to simulate the estimation of the geographical position of a vehicle autonomous unmanned air. For the application, these ANNs were compared with the Sobel operator and Canny algorithm.http://urlib.net/sid.inpe.br/mtc-m19/2011/04.01.13.25info:eu-repo/semantics/openAccessporreponame:Biblioteca Digital de Teses e Dissertações do INPEinstname:Instituto Nacional de Pesquisas Espaciais (INPE)instacron:INPE2021-07-31T06:53:36Zoai:urlib.net:sid.inpe.br/mtc-m19/2011/04.01.13.25.23-0Biblioteca Digital de Teses e Dissertaçõeshttp://bibdigital.sid.inpe.br/PUBhttp://bibdigital.sid.inpe.br/col/iconet.com.br/banon/2003/11.21.21.08/doc/oai.cgiopendoar:32772021-07-31 06:53:37.09Biblioteca Digital de Teses e Dissertações do INPE - Instituto Nacional de Pesquisas Espaciais (INPE)false
dc.title.pt.fl_str_mv Redes neurais artificiais em imagens para estimação da posição de um VANT
dc.title.alternative.en.fl_str_mv Artificial neural networks on images for UAV position estimation
title Redes neurais artificiais em imagens para estimação da posição de um VANT
spellingShingle Redes neurais artificiais em imagens para estimação da posição de um VANT
Gustavo Augusto Mascarenhas Goltz
title_short Redes neurais artificiais em imagens para estimação da posição de um VANT
title_full Redes neurais artificiais em imagens para estimação da posição de um VANT
title_fullStr Redes neurais artificiais em imagens para estimação da posição de um VANT
title_full_unstemmed Redes neurais artificiais em imagens para estimação da posição de um VANT
title_sort Redes neurais artificiais em imagens para estimação da posição de um VANT
author Gustavo Augusto Mascarenhas Goltz
author_facet Gustavo Augusto Mascarenhas Goltz
author_role author
dc.contributor.advisor1.fl_str_mv Haroldo Fraga de Campos Velho
dc.contributor.advisor2.fl_str_mv Elcio Hideiti Shiguemori
dc.contributor.referee1.fl_str_mv Leila Maria Garcia Fonseca
dc.contributor.referee2.fl_str_mv Luciano Vieira Dutra
dc.contributor.referee3.fl_str_mv Antonio de Pádua Braga
dc.contributor.author.fl_str_mv Gustavo Augusto Mascarenhas Goltz
contributor_str_mv Haroldo Fraga de Campos Velho
Elcio Hideiti Shiguemori
Leila Maria Garcia Fonseca
Luciano Vieira Dutra
Antonio de Pádua Braga
dc.description.abstract.por.fl_txt_mv A aplicação de Veículos Aéreos Não Tripulados (VANTs) intensificou-se nos últimos tempos devido ao baixo custo operacional e de fabricação comparados às aeronaves convencionais, ausência de tripulação (aplicações em tarefas tediosas, cansativas ou que envolvem risco à tripulação), maior autonomia, entre outros fatores. A navegação aérea por imagens, capturadas em tempo real da região sobrevoada pelo VANT, é uma alternativa para a navegação autônoma destas aeronaves. As Redes Neurais Artificiais (RNAs) são ferramentas usadas com sucesso em diversas aplicações que envolvem processamento de imagens devido ao seu baixo custo computacional, tolerância a falhas e robustez ao ruído. A navegação aérea autônoma por imagens é uma aplicação com potencial para o emprego de RNAs por necessitar de processamento rápido, embarcado e tolerante a falhas. Neste contexto foram usadas três RNAs com treinamento supervisionado e de diferentes arquiteturas (rede com funções de base radial, rede perceptron de múltiplas camadas e rede neural celular) aplicadas na extração de bordas em imagens aéreas e de satélite, para posterior cálculo da correlação no domínio espacial entre as bordas dessas imagens, a fim de simular a estimação da posição geográfica de um VANT. A informação de borda neste caso é interessante por ser invariável ao tipo de sensor de imageamento (satélite e imagens aéreas). Para a aplicação, as redes neurais foram comparadas com os operadores Sobel e Canny.
dc.description.abstract.eng.fl_txt_mv The application of Unmanned Aerial Vehicles (UAVs) has intensified in recent years due to low operating cost and manufacturing compared to conventional aircraft, no crew (applications on tedious tasks, tiring, or that involve risk to the crew), more autonomy, among other factors. The navigation based on images, captured in real time of the area overflown by the UAV, is an alternative for autonomous navigation of such aircraft. Artificial Neural Networks (ANNs) are powerful tools used in various applications involving image processing due to its low computational cost, fault tolerance and robustness to noise. The autonomous navigation of images is an application for employment potential of ANNs because need fast processing, embedded code, and fault tolerance. In this context, three ANNs were approached with supervised training and different architectures (neural network radial basis function, multilayer perceptron and cellular neural network) applied in edge detection on aerial and satellite images, for later calculation of the correlation in spatial domain between these images to simulate the estimation of the geographical position of a vehicle autonomous unmanned air. For the application, these ANNs were compared with the Sobel operator and Canny algorithm.
description A aplicação de Veículos Aéreos Não Tripulados (VANTs) intensificou-se nos últimos tempos devido ao baixo custo operacional e de fabricação comparados às aeronaves convencionais, ausência de tripulação (aplicações em tarefas tediosas, cansativas ou que envolvem risco à tripulação), maior autonomia, entre outros fatores. A navegação aérea por imagens, capturadas em tempo real da região sobrevoada pelo VANT, é uma alternativa para a navegação autônoma destas aeronaves. As Redes Neurais Artificiais (RNAs) são ferramentas usadas com sucesso em diversas aplicações que envolvem processamento de imagens devido ao seu baixo custo computacional, tolerância a falhas e robustez ao ruído. A navegação aérea autônoma por imagens é uma aplicação com potencial para o emprego de RNAs por necessitar de processamento rápido, embarcado e tolerante a falhas. Neste contexto foram usadas três RNAs com treinamento supervisionado e de diferentes arquiteturas (rede com funções de base radial, rede perceptron de múltiplas camadas e rede neural celular) aplicadas na extração de bordas em imagens aéreas e de satélite, para posterior cálculo da correlação no domínio espacial entre as bordas dessas imagens, a fim de simular a estimação da posição geográfica de um VANT. A informação de borda neste caso é interessante por ser invariável ao tipo de sensor de imageamento (satélite e imagens aéreas). Para a aplicação, as redes neurais foram comparadas com os operadores Sobel e Canny.
publishDate 2011
dc.date.issued.fl_str_mv 2011-05-06
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
status_str publishedVersion
format masterThesis
dc.identifier.uri.fl_str_mv http://urlib.net/sid.inpe.br/mtc-m19/2011/04.01.13.25
url http://urlib.net/sid.inpe.br/mtc-m19/2011/04.01.13.25
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Instituto Nacional de Pesquisas Espaciais (INPE)
dc.publisher.program.fl_str_mv Programa de Pós-Graduação do INPE em Computação Aplicada
dc.publisher.initials.fl_str_mv INPE
dc.publisher.country.fl_str_mv BR
publisher.none.fl_str_mv Instituto Nacional de Pesquisas Espaciais (INPE)
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do INPE
instname:Instituto Nacional de Pesquisas Espaciais (INPE)
instacron:INPE
reponame_str Biblioteca Digital de Teses e Dissertações do INPE
collection Biblioteca Digital de Teses e Dissertações do INPE
instname_str Instituto Nacional de Pesquisas Espaciais (INPE)
instacron_str INPE
institution INPE
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do INPE - Instituto Nacional de Pesquisas Espaciais (INPE)
repository.mail.fl_str_mv
publisher_program_txtF_mv Programa de Pós-Graduação do INPE em Computação Aplicada
contributor_advisor1_txtF_mv Haroldo Fraga de Campos Velho
_version_ 1706809353084862464