Parallel implementation of the aeh technique for the solution of plane multiphasic problems

Bibliographic Details
Main Author: Quintela, Bárbara de Melo
Publication Date: 2010
Other Authors: Ferreira, Anna Paula Guida, Farage, Michèle Cristina Resende, Lobosco, Marcelo
Format: Article
Language: eng
Source: Repositório Institucional da FURG (RI FURG)
Download full: http://repositorio.furg.br/handle/1/7187
Summary: The Asymptotic Expansion Homogenization (AEH) technique is used to estimate the effective properties of heterogeneous media with periodical microstructure. A considerable computational effort can be necessary even though the adopted models are quite simple. For this reason, parallelization is often necessary to achieve good performance. This work presents a first attempt to parallelize the AEH implementation code. Although the parallelization process is in a very early stage, the preliminary results show that the parallel version provides up to a 30% improvement in application speed. This work consists on a step towards a numerical tool for the analysis of more complex and three-dimensional periodic cells. The two-dimensional AEH was implemented in the C programming language for the future generalization to three-dimensional problems employing the available parallelization tools.
id FURG_f5dbb808a53e9879b85fbf9f58b5909f
oai_identifier_str oai:repositorio.furg.br:1/7187
network_acronym_str FURG
network_name_str Repositório Institucional da FURG (RI FURG)
repository_id_str
spelling Parallel implementation of the aeh technique for the solution of plane multiphasic problemsAsymptotic homogenizationHeterogeneityPeriodicityFinite element methodParallel computingThe Asymptotic Expansion Homogenization (AEH) technique is used to estimate the effective properties of heterogeneous media with periodical microstructure. A considerable computational effort can be necessary even though the adopted models are quite simple. For this reason, parallelization is often necessary to achieve good performance. This work presents a first attempt to parallelize the AEH implementation code. Although the parallelization process is in a very early stage, the preliminary results show that the parallel version provides up to a 30% improvement in application speed. This work consists on a step towards a numerical tool for the analysis of more complex and three-dimensional periodic cells. The two-dimensional AEH was implemented in the C programming language for the future generalization to three-dimensional problems employing the available parallelization tools.EDGRAF2017-05-25T20:53:37Z2017-05-25T20:53:37Z2010info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfQUINTELA, Bárbara de Melo et al. Vetor, v. 20, n. 1, p. 30-44, 2010. Disponível em: <https://www.seer.furg.br/vetor/article/view/1742>. Acesso em: 12 dez. 2016.0102-7352http://repositorio.furg.br/handle/1/7187engQuintela, Bárbara de MeloFerreira, Anna Paula GuidaFarage, Michèle Cristina ResendeLobosco, Marceloinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da FURG (RI FURG)instname:Universidade Federal do Rio Grande (FURG)instacron:FURG2017-05-25T20:53:37Zoai:repositorio.furg.br:1/7187Repositório InstitucionalPUBhttps://repositorio.furg.br/oai/request || http://200.19.254.174/oai/requestrepositorio@furg.br||sib.bdtd@furg.bropendoar:2017-05-25T20:53:37Repositório Institucional da FURG (RI FURG) - Universidade Federal do Rio Grande (FURG)false
dc.title.none.fl_str_mv Parallel implementation of the aeh technique for the solution of plane multiphasic problems
title Parallel implementation of the aeh technique for the solution of plane multiphasic problems
spellingShingle Parallel implementation of the aeh technique for the solution of plane multiphasic problems
Quintela, Bárbara de Melo
Asymptotic homogenization
Heterogeneity
Periodicity
Finite element method
Parallel computing
title_short Parallel implementation of the aeh technique for the solution of plane multiphasic problems
title_full Parallel implementation of the aeh technique for the solution of plane multiphasic problems
title_fullStr Parallel implementation of the aeh technique for the solution of plane multiphasic problems
title_full_unstemmed Parallel implementation of the aeh technique for the solution of plane multiphasic problems
title_sort Parallel implementation of the aeh technique for the solution of plane multiphasic problems
author Quintela, Bárbara de Melo
author_facet Quintela, Bárbara de Melo
Ferreira, Anna Paula Guida
Farage, Michèle Cristina Resende
Lobosco, Marcelo
author_role author
author2 Ferreira, Anna Paula Guida
Farage, Michèle Cristina Resende
Lobosco, Marcelo
author2_role author
author
author
dc.contributor.author.fl_str_mv Quintela, Bárbara de Melo
Ferreira, Anna Paula Guida
Farage, Michèle Cristina Resende
Lobosco, Marcelo
dc.subject.por.fl_str_mv Asymptotic homogenization
Heterogeneity
Periodicity
Finite element method
Parallel computing
topic Asymptotic homogenization
Heterogeneity
Periodicity
Finite element method
Parallel computing
description The Asymptotic Expansion Homogenization (AEH) technique is used to estimate the effective properties of heterogeneous media with periodical microstructure. A considerable computational effort can be necessary even though the adopted models are quite simple. For this reason, parallelization is often necessary to achieve good performance. This work presents a first attempt to parallelize the AEH implementation code. Although the parallelization process is in a very early stage, the preliminary results show that the parallel version provides up to a 30% improvement in application speed. This work consists on a step towards a numerical tool for the analysis of more complex and three-dimensional periodic cells. The two-dimensional AEH was implemented in the C programming language for the future generalization to three-dimensional problems employing the available parallelization tools.
publishDate 2010
dc.date.none.fl_str_mv 2010
2017-05-25T20:53:37Z
2017-05-25T20:53:37Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv QUINTELA, Bárbara de Melo et al. Vetor, v. 20, n. 1, p. 30-44, 2010. Disponível em: <https://www.seer.furg.br/vetor/article/view/1742>. Acesso em: 12 dez. 2016.
0102-7352
http://repositorio.furg.br/handle/1/7187
identifier_str_mv QUINTELA, Bárbara de Melo et al. Vetor, v. 20, n. 1, p. 30-44, 2010. Disponível em: <https://www.seer.furg.br/vetor/article/view/1742>. Acesso em: 12 dez. 2016.
0102-7352
url http://repositorio.furg.br/handle/1/7187
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv EDGRAF
publisher.none.fl_str_mv EDGRAF
dc.source.none.fl_str_mv reponame:Repositório Institucional da FURG (RI FURG)
instname:Universidade Federal do Rio Grande (FURG)
instacron:FURG
instname_str Universidade Federal do Rio Grande (FURG)
instacron_str FURG
institution FURG
reponame_str Repositório Institucional da FURG (RI FURG)
collection Repositório Institucional da FURG (RI FURG)
repository.name.fl_str_mv Repositório Institucional da FURG (RI FURG) - Universidade Federal do Rio Grande (FURG)
repository.mail.fl_str_mv repositorio@furg.br||sib.bdtd@furg.br
_version_ 1830650731823104000