Solving Feature Selection Problems with Quantum Algorithms on Real Financial Data
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2024 |
| Outros Autores: | , , , |
| Tipo de documento: | Artigo |
| Idioma: | por |
| Título da fonte: | Vetor (Online) |
| Texto Completo: | https://periodicos.furg.br/vetor/article/view/18358 |
Resumo: | The financial sector faces significant challenges when dealing with high-dimensional datasets and a limited number of samples, making it difficult to build robust predictive models. Traditional machine learning techniques help mitigate these problems, but the presence of irrelevant and redundant features increases computational complexity. This article presents the application of quantum algorithms in feature selection using real data from the financial sector, demonstrating that these algorithms can improve the efficiency and accuracy of predictive models. The approach involves formulating the problem in terms of Unconstrained Quadratic Binary Optimization (QUBO), and its solution implemented in quantum annealer simulators. The experiments show promising results, which are analyzed using the Akaike Information Criterion metric. The results suggest that variational quantum algorithms have great application potential compared to traditional feature selection techniques. |
| id |
FURG-7_660fecdb48a44c2b4a2a346260fdcc7c |
|---|---|
| oai_identifier_str |
oai:ojs.periodicos.furg.br:article/18358 |
| network_acronym_str |
FURG-7 |
| network_name_str |
Vetor (Online) |
| repository_id_str |
|
| spelling |
Solving Feature Selection Problems with Quantum Algorithms on Real Financial DataResolução de Problemas de Seleção de Características com Algoritmos Quânticos em Dados Financeiros ReaisFeature selectionFinancial DataQuantum AnnealingQUBOMachine LearningComputational modelingMachine LearningSeleção de característicasDados financeirosQuantum AnnealingQUBOAprendizado de MáquinaModelagem computacionalAprendizado de máquinaThe financial sector faces significant challenges when dealing with high-dimensional datasets and a limited number of samples, making it difficult to build robust predictive models. Traditional machine learning techniques help mitigate these problems, but the presence of irrelevant and redundant features increases computational complexity. This article presents the application of quantum algorithms in feature selection using real data from the financial sector, demonstrating that these algorithms can improve the efficiency and accuracy of predictive models. The approach involves formulating the problem in terms of Unconstrained Quadratic Binary Optimization (QUBO), and its solution implemented in quantum annealer simulators. The experiments show promising results, which are analyzed using the Akaike Information Criterion metric. The results suggest that variational quantum algorithms have great application potential compared to traditional feature selection techniques.O setor financeiro enfrenta desafios significativos ao lidar com conjuntos de dados de alta dimensionalidade e um número limitado de amostras, dificultando a construção de modelos preditivos robustos. Técnicas tradicionais de aprendizado de máquina ajudam a mitigar esses problemas, mas a presença de características irrelevantes e redundantes aumenta a complexidade computacional. Este artigo apresenta a aplicação de algoritmos quânticos na seleção de características usando dados reais do setor financeiro, demonstrando que esses algoritmos podem melhorar a eficiência e a precisão dos modelos preditivos. A abordagem envolve a formulação do problema em termos de Otimização Binária Quadrática Irrestrita (QUBO), e sua solução é implementada em simuladores de um annealer quântico. Os experimentos mostram resultados promissores, que são analisados adotando-se a métrica do Critério de Informação de Akaike. Os resultados sugerem que os algoritmos quânticos variacionais têm grande potencial de aplicação se comparados a técnicas tradicionais de seleção de características.Universidade Federal do Rio Grande2024-12-18info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.furg.br/vetor/article/view/1835810.14295/vetor.v34i2.18358VETOR - Journal of Exact Sciences and Engineering; Vol. 34 No. 2 (2024); e18358VETOR - Revista de Ciências Exatas e Engenharias; v. 34 n. 2 (2024); e183582358-34520102-7352reponame:Vetor (Online)instname:Universidade Federal do Rio Grande (FURG)instacron:FURGporhttps://periodicos.furg.br/vetor/article/view/18358/11438Copyright (c) 2024 VETOR - Revista de Ciências Exatas e Engenhariasinfo:eu-repo/semantics/openAccessGalvão, LucasPires, OttoChagas, Yan AlefFraga, Maria HeloísaMoret, Marcelo A.2024-12-18T13:02:45Zoai:ojs.periodicos.furg.br:article/18358Revistahttps://periodicos.furg.br/vetorPUBhttps://periodicos.furg.br/vetor/oaigmplatt@furg.br2358-34520102-7352opendoar:2024-12-18T13:02:45Vetor (Online) - Universidade Federal do Rio Grande (FURG)false |
| dc.title.none.fl_str_mv |
Solving Feature Selection Problems with Quantum Algorithms on Real Financial Data Resolução de Problemas de Seleção de Características com Algoritmos Quânticos em Dados Financeiros Reais |
| title |
Solving Feature Selection Problems with Quantum Algorithms on Real Financial Data |
| spellingShingle |
Solving Feature Selection Problems with Quantum Algorithms on Real Financial Data Galvão, Lucas Feature selection Financial Data Quantum Annealing QUBO Machine Learning Computational modeling Machine Learning Seleção de características Dados financeiros Quantum Annealing QUBO Aprendizado de Máquina Modelagem computacional Aprendizado de máquina |
| title_short |
Solving Feature Selection Problems with Quantum Algorithms on Real Financial Data |
| title_full |
Solving Feature Selection Problems with Quantum Algorithms on Real Financial Data |
| title_fullStr |
Solving Feature Selection Problems with Quantum Algorithms on Real Financial Data |
| title_full_unstemmed |
Solving Feature Selection Problems with Quantum Algorithms on Real Financial Data |
| title_sort |
Solving Feature Selection Problems with Quantum Algorithms on Real Financial Data |
| author |
Galvão, Lucas |
| author_facet |
Galvão, Lucas Pires, Otto Chagas, Yan Alef Fraga, Maria Heloísa Moret, Marcelo A. |
| author_role |
author |
| author2 |
Pires, Otto Chagas, Yan Alef Fraga, Maria Heloísa Moret, Marcelo A. |
| author2_role |
author author author author |
| dc.contributor.author.fl_str_mv |
Galvão, Lucas Pires, Otto Chagas, Yan Alef Fraga, Maria Heloísa Moret, Marcelo A. |
| dc.subject.por.fl_str_mv |
Feature selection Financial Data Quantum Annealing QUBO Machine Learning Computational modeling Machine Learning Seleção de características Dados financeiros Quantum Annealing QUBO Aprendizado de Máquina Modelagem computacional Aprendizado de máquina |
| topic |
Feature selection Financial Data Quantum Annealing QUBO Machine Learning Computational modeling Machine Learning Seleção de características Dados financeiros Quantum Annealing QUBO Aprendizado de Máquina Modelagem computacional Aprendizado de máquina |
| description |
The financial sector faces significant challenges when dealing with high-dimensional datasets and a limited number of samples, making it difficult to build robust predictive models. Traditional machine learning techniques help mitigate these problems, but the presence of irrelevant and redundant features increases computational complexity. This article presents the application of quantum algorithms in feature selection using real data from the financial sector, demonstrating that these algorithms can improve the efficiency and accuracy of predictive models. The approach involves formulating the problem in terms of Unconstrained Quadratic Binary Optimization (QUBO), and its solution implemented in quantum annealer simulators. The experiments show promising results, which are analyzed using the Akaike Information Criterion metric. The results suggest that variational quantum algorithms have great application potential compared to traditional feature selection techniques. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-12-18 |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://periodicos.furg.br/vetor/article/view/18358 10.14295/vetor.v34i2.18358 |
| url |
https://periodicos.furg.br/vetor/article/view/18358 |
| identifier_str_mv |
10.14295/vetor.v34i2.18358 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
https://periodicos.furg.br/vetor/article/view/18358/11438 |
| dc.rights.driver.fl_str_mv |
Copyright (c) 2024 VETOR - Revista de Ciências Exatas e Engenharias info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Copyright (c) 2024 VETOR - Revista de Ciências Exatas e Engenharias |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal do Rio Grande |
| publisher.none.fl_str_mv |
Universidade Federal do Rio Grande |
| dc.source.none.fl_str_mv |
VETOR - Journal of Exact Sciences and Engineering; Vol. 34 No. 2 (2024); e18358 VETOR - Revista de Ciências Exatas e Engenharias; v. 34 n. 2 (2024); e18358 2358-3452 0102-7352 reponame:Vetor (Online) instname:Universidade Federal do Rio Grande (FURG) instacron:FURG |
| instname_str |
Universidade Federal do Rio Grande (FURG) |
| instacron_str |
FURG |
| institution |
FURG |
| reponame_str |
Vetor (Online) |
| collection |
Vetor (Online) |
| repository.name.fl_str_mv |
Vetor (Online) - Universidade Federal do Rio Grande (FURG) |
| repository.mail.fl_str_mv |
gmplatt@furg.br |
| _version_ |
1832013283343728640 |