Solving Feature Selection Problems with Quantum Algorithms on Real Financial Data

Detalhes bibliográficos
Autor(a) principal: Galvão, Lucas
Data de Publicação: 2024
Outros Autores: Pires, Otto, Chagas, Yan Alef, Fraga, Maria Heloísa, Moret, Marcelo A.
Tipo de documento: Artigo
Idioma: por
Título da fonte: Vetor (Online)
Texto Completo: https://periodicos.furg.br/vetor/article/view/18358
Resumo: The financial sector faces significant challenges when dealing with high-dimensional datasets and a limited number of samples, making it difficult to build robust predictive models. Traditional machine learning techniques help mitigate these problems, but the presence of irrelevant and redundant features increases computational complexity. This article presents the application of quantum algorithms in feature selection using real data from the financial sector, demonstrating that these algorithms can improve the efficiency and accuracy of predictive models. The approach involves formulating the problem in terms of Unconstrained Quadratic Binary Optimization (QUBO), and its solution implemented in quantum annealer simulators. The experiments show promising results, which are analyzed using the Akaike Information Criterion metric. The results suggest that variational quantum algorithms have great application potential compared to traditional feature selection techniques.
id FURG-7_660fecdb48a44c2b4a2a346260fdcc7c
oai_identifier_str oai:ojs.periodicos.furg.br:article/18358
network_acronym_str FURG-7
network_name_str Vetor (Online)
repository_id_str
spelling Solving Feature Selection Problems with Quantum Algorithms on Real Financial DataResolução de Problemas de Seleção de Características com Algoritmos Quânticos em Dados Financeiros ReaisFeature selectionFinancial DataQuantum AnnealingQUBOMachine LearningComputational modelingMachine LearningSeleção de característicasDados financeirosQuantum AnnealingQUBOAprendizado de MáquinaModelagem computacionalAprendizado de máquinaThe financial sector faces significant challenges when dealing with high-dimensional datasets and a limited number of samples, making it difficult to build robust predictive models. Traditional machine learning techniques help mitigate these problems, but the presence of irrelevant and redundant features increases computational complexity. This article presents the application of quantum algorithms in feature selection using real data from the financial sector, demonstrating that these algorithms can improve the efficiency and accuracy of predictive models. The approach involves formulating the problem in terms of Unconstrained Quadratic Binary Optimization (QUBO), and its solution implemented in quantum annealer simulators. The experiments show promising results, which are analyzed using the Akaike Information Criterion metric. The results suggest that variational quantum algorithms have great application potential compared to traditional feature selection techniques.O setor financeiro enfrenta desafios significativos ao lidar com conjuntos de dados de alta dimensionalidade e um número limitado de amostras, dificultando a construção de modelos preditivos robustos. Técnicas tradicionais de aprendizado de máquina ajudam a mitigar esses problemas, mas a presença de características irrelevantes e redundantes aumenta a complexidade computacional. Este artigo apresenta a aplicação de algoritmos quânticos na seleção de características usando dados reais do setor financeiro, demonstrando que esses algoritmos podem melhorar a eficiência e a precisão dos modelos preditivos. A abordagem envolve a formulação do problema em termos de Otimização Binária Quadrática Irrestrita (QUBO), e sua solução é implementada em simuladores de um annealer quântico. Os experimentos mostram resultados promissores, que são analisados adotando-se a métrica do Critério de Informação de Akaike. Os resultados sugerem que os algoritmos quânticos variacionais têm grande potencial de aplicação se comparados a técnicas tradicionais de seleção de características.Universidade Federal do Rio Grande2024-12-18info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.furg.br/vetor/article/view/1835810.14295/vetor.v34i2.18358VETOR - Journal of Exact Sciences and Engineering; Vol. 34 No. 2 (2024); e18358VETOR - Revista de Ciências Exatas e Engenharias; v. 34 n. 2 (2024); e183582358-34520102-7352reponame:Vetor (Online)instname:Universidade Federal do Rio Grande (FURG)instacron:FURGporhttps://periodicos.furg.br/vetor/article/view/18358/11438Copyright (c) 2024 VETOR - Revista de Ciências Exatas e Engenhariasinfo:eu-repo/semantics/openAccessGalvão, LucasPires, OttoChagas, Yan AlefFraga, Maria HeloísaMoret, Marcelo A.2024-12-18T13:02:45Zoai:ojs.periodicos.furg.br:article/18358Revistahttps://periodicos.furg.br/vetorPUBhttps://periodicos.furg.br/vetor/oaigmplatt@furg.br2358-34520102-7352opendoar:2024-12-18T13:02:45Vetor (Online) - Universidade Federal do Rio Grande (FURG)false
dc.title.none.fl_str_mv Solving Feature Selection Problems with Quantum Algorithms on Real Financial Data
Resolução de Problemas de Seleção de Características com Algoritmos Quânticos em Dados Financeiros Reais
title Solving Feature Selection Problems with Quantum Algorithms on Real Financial Data
spellingShingle Solving Feature Selection Problems with Quantum Algorithms on Real Financial Data
Galvão, Lucas
Feature selection
Financial Data
Quantum Annealing
QUBO
Machine Learning
Computational modeling
Machine Learning
Seleção de características
Dados financeiros
Quantum Annealing
QUBO
Aprendizado de Máquina
Modelagem computacional
Aprendizado de máquina
title_short Solving Feature Selection Problems with Quantum Algorithms on Real Financial Data
title_full Solving Feature Selection Problems with Quantum Algorithms on Real Financial Data
title_fullStr Solving Feature Selection Problems with Quantum Algorithms on Real Financial Data
title_full_unstemmed Solving Feature Selection Problems with Quantum Algorithms on Real Financial Data
title_sort Solving Feature Selection Problems with Quantum Algorithms on Real Financial Data
author Galvão, Lucas
author_facet Galvão, Lucas
Pires, Otto
Chagas, Yan Alef
Fraga, Maria Heloísa
Moret, Marcelo A.
author_role author
author2 Pires, Otto
Chagas, Yan Alef
Fraga, Maria Heloísa
Moret, Marcelo A.
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Galvão, Lucas
Pires, Otto
Chagas, Yan Alef
Fraga, Maria Heloísa
Moret, Marcelo A.
dc.subject.por.fl_str_mv Feature selection
Financial Data
Quantum Annealing
QUBO
Machine Learning
Computational modeling
Machine Learning
Seleção de características
Dados financeiros
Quantum Annealing
QUBO
Aprendizado de Máquina
Modelagem computacional
Aprendizado de máquina
topic Feature selection
Financial Data
Quantum Annealing
QUBO
Machine Learning
Computational modeling
Machine Learning
Seleção de características
Dados financeiros
Quantum Annealing
QUBO
Aprendizado de Máquina
Modelagem computacional
Aprendizado de máquina
description The financial sector faces significant challenges when dealing with high-dimensional datasets and a limited number of samples, making it difficult to build robust predictive models. Traditional machine learning techniques help mitigate these problems, but the presence of irrelevant and redundant features increases computational complexity. This article presents the application of quantum algorithms in feature selection using real data from the financial sector, demonstrating that these algorithms can improve the efficiency and accuracy of predictive models. The approach involves formulating the problem in terms of Unconstrained Quadratic Binary Optimization (QUBO), and its solution implemented in quantum annealer simulators. The experiments show promising results, which are analyzed using the Akaike Information Criterion metric. The results suggest that variational quantum algorithms have great application potential compared to traditional feature selection techniques.
publishDate 2024
dc.date.none.fl_str_mv 2024-12-18
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.furg.br/vetor/article/view/18358
10.14295/vetor.v34i2.18358
url https://periodicos.furg.br/vetor/article/view/18358
identifier_str_mv 10.14295/vetor.v34i2.18358
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://periodicos.furg.br/vetor/article/view/18358/11438
dc.rights.driver.fl_str_mv Copyright (c) 2024 VETOR - Revista de Ciências Exatas e Engenharias
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2024 VETOR - Revista de Ciências Exatas e Engenharias
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Rio Grande
publisher.none.fl_str_mv Universidade Federal do Rio Grande
dc.source.none.fl_str_mv VETOR - Journal of Exact Sciences and Engineering; Vol. 34 No. 2 (2024); e18358
VETOR - Revista de Ciências Exatas e Engenharias; v. 34 n. 2 (2024); e18358
2358-3452
0102-7352
reponame:Vetor (Online)
instname:Universidade Federal do Rio Grande (FURG)
instacron:FURG
instname_str Universidade Federal do Rio Grande (FURG)
instacron_str FURG
institution FURG
reponame_str Vetor (Online)
collection Vetor (Online)
repository.name.fl_str_mv Vetor (Online) - Universidade Federal do Rio Grande (FURG)
repository.mail.fl_str_mv gmplatt@furg.br
_version_ 1832013283343728640