Adaptive exponential explicit integrators for stochastic differential equations
| Main Author: | |
|---|---|
| Publication Date: | 2024 |
| Format: | Doctoral thesis |
| Language: | eng |
| Source: | Repositório Institucional do FGV (FGV Repositório Digital) |
| Download full: | https://hdl.handle.net/10438/36342 |
Summary: | Esta tese apresenta novos métodos adaptativos para equações diferenciais estocásticas (EDEs) com ruído aditivo. Introduzimos técnicas inovadoras para embutir esquemas numéricos exponenciais, resultando em dois novos esquemas numéricos explícitos, embutidos e A-estáveis: o esquema de Linearização Local (LL) embutido e o esquema LL RungeKutta embutido. Além disso, apresentamos técnicas de otimização para o algoritmo de Padé, a fim de calcular de forma eficiente as exponenciais de matrizes exigidas por esses esquemas. A tese também fornece uma formulação abrangente para integradores numéricos com passo adaptativo, oferecendo uma nova estratégia adaptativa que trata de forma eficaz EDEs com níveis de ruído variáveis ao longo do intervalo de integração. Esses desenvolvimentos resultam em integradores explícitos adaptativos A-estáveis que, em geral, proporcionam o mesmo nível de precisão dos esquemas adaptativos explícitos instáveis, sendo particularmente eficientes para EDEs rígidas e com um custo computacional significativamente menor do que suas contrapartes instáveis |
| id |
FGV_b28efcf66b4b896eaa84a9f0efb02ecd |
|---|---|
| oai_identifier_str |
oai:repositorio.fgv.br:10438/36342 |
| network_acronym_str |
FGV |
| network_name_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
| repository_id_str |
3974 |
| spelling |
Maio, Pablo Aguiar DeEscolas::EMApSaporito, Yuri FahhamCruz Cancino, Hugo Alexander de la2025-01-14T17:34:08Z2025-01-14T17:34:08Z2024-10-10https://hdl.handle.net/10438/36342Esta tese apresenta novos métodos adaptativos para equações diferenciais estocásticas (EDEs) com ruído aditivo. Introduzimos técnicas inovadoras para embutir esquemas numéricos exponenciais, resultando em dois novos esquemas numéricos explícitos, embutidos e A-estáveis: o esquema de Linearização Local (LL) embutido e o esquema LL RungeKutta embutido. Além disso, apresentamos técnicas de otimização para o algoritmo de Padé, a fim de calcular de forma eficiente as exponenciais de matrizes exigidas por esses esquemas. A tese também fornece uma formulação abrangente para integradores numéricos com passo adaptativo, oferecendo uma nova estratégia adaptativa que trata de forma eficaz EDEs com níveis de ruído variáveis ao longo do intervalo de integração. Esses desenvolvimentos resultam em integradores explícitos adaptativos A-estáveis que, em geral, proporcionam o mesmo nível de precisão dos esquemas adaptativos explícitos instáveis, sendo particularmente eficientes para EDEs rígidas e com um custo computacional significativamente menor do que suas contrapartes instáveisThis thesis presents new adaptive methods for stochastic differential equations (SDEs) with additive noise. We introduce innovative techniques for embedding exponential-based schemes, resulting in two novel embedded A-stable explicit numerical schemes: the embedded Local Linearization (LL) scheme and the embedded LL Runge-Kutta scheme. Additionally, we present optimization techniques for the Padé algorithm to efficiently compute the matrix exponentials required by these schemes. The thesis also provides a comprehensive framework for adaptive time-step numerical integrators, offering a new adaptive strategy that effectively manages SDEs with varying noise levels over the integration interval. These developments yield explicit A-stable adaptive integrators that in general provide the same level of accuracy of explicit unstable adaptive schemes, and are particularly efficient for stiff SDEs, providing much lower computational cost than its unstable counterparts.FGV-EMAp e CAPES.engStochastic differential equationsStochastic numerical methodsLocal linearization approachAdaptive time-step integratorsA-stabilityNumerical analysisEquações diferenciais estocásticasMétodos numéricos estocásticosMétodos de linearização localMatemáticaAnálise numéricaEquações diferenciais estocásticasAlgoritmosMatemáticaAdaptive exponential explicit integrators for stochastic differential equationsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVinfo:eu-repo/semantics/openAccessORIGINALThesis - Pablo De Maio.pdfThesis - Pablo De Maio.pdfPDFapplication/pdf4963457https://repositorio.fgv.br/bitstreams/e26a97e5-7166-42d9-99b5-d1d1cec73d48/download2835b9045ba56c8fe92204832fc897f1MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-85112https://repositorio.fgv.br/bitstreams/befa0520-0d36-4b6b-a0fc-59f8513e08cf/download2a4b67231f701c416a809246e7a10077MD52TEXTThesis - Pablo De Maio.pdf.txtThesis - Pablo De Maio.pdf.txtExtracted texttext/plain113359https://repositorio.fgv.br/bitstreams/46500e65-126e-46d9-a0fb-b358c4a03207/download284c9ac5fcbdbfd5dac21089ce403806MD53THUMBNAILThesis - Pablo De Maio.pdf.jpgThesis - Pablo De Maio.pdf.jpgGenerated Thumbnailimage/jpeg2369https://repositorio.fgv.br/bitstreams/61aeaf30-5349-478a-8249-228dae0dcd32/downloadd0ccd93c91cdd4faca35a9cf10efb568MD5410438/363422025-01-14 21:01:24.426open.accessoai:repositorio.fgv.br:10438/36342https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742025-01-14T21:01:24Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVGVybW8gZGUgTGljZW5jaWFtZW50bwpIw6EgdW0gw7psdGltbyBwYXNzbzogcGFyYSByZXByb2R1emlyLCB0cmFkdXppciBlIGRpc3RyaWJ1aXIgc3VhIHN1Ym1pc3PDo28gZW0gdG9kbyBvIG11bmRvLCB2b2PDqiBkZXZlIGNvbmNvcmRhciBjb20gb3MgdGVybW9zIGEgc2VndWlyLgoKQ29uY29yZGFyIGNvbSBvIFRlcm1vIGRlIExpY2VuY2lhbWVudG8sIHNlbGVjaW9uYW5kbyAiRXUgY29uY29yZG8gY29tIG8gVGVybW8gZGUgTGljZW5jaWFtZW50byIgZSBjbGlxdWUgZW0gIkZpbmFsaXphciBzdWJtaXNzw6NvIi4KClRFUk1PUyBMSUNFTkNJQU1FTlRPIFBBUkEgQVJRVUlWQU1FTlRPLCBSRVBST0RVw4fDg08gRSBESVZVTEdBw4fDg08gUMOaQkxJQ0EgREUgQ09OVEXDmkRPIMOAIEJJQkxJT1RFQ0EgVklSVFVBTCBGR1YgKHZlcnPDo28gMS4yKQoKMS4gVm9jw6osIHVzdcOhcmlvLWRlcG9zaXRhbnRlIGRhIEJpYmxpb3RlY2EgVmlydHVhbCBGR1YsIGFzc2VndXJhLCBubyBwcmVzZW50ZSBhdG8sIHF1ZSDDqSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXRyaW1vbmlhaXMgZS9vdSBkaXJlaXRvcyBjb25leG9zIHJlZmVyZW50ZXMgw6AgdG90YWxpZGFkZSBkYSBPYnJhIG9yYSBkZXBvc2l0YWRhIGVtIGZvcm1hdG8gZGlnaXRhbCwgYmVtIGNvbW8gZGUgc2V1cyBjb21wb25lbnRlcyBtZW5vcmVzLCBlbSBzZSB0cmF0YW5kbyBkZSBvYnJhIGNvbGV0aXZhLCBjb25mb3JtZSBvIHByZWNlaXR1YWRvIHBlbGEgTGVpIDkuNjEwLzk4IGUvb3UgTGVpIDkuNjA5Lzk4LiBOw6NvIHNlbmRvIGVzdGUgbyBjYXNvLCB2b2PDqiBhc3NlZ3VyYSB0ZXIgb2J0aWRvLCBkaXJldGFtZW50ZSBkb3MgZGV2aWRvcyB0aXR1bGFyZXMsIGF1dG9yaXphw6fDo28gcHLDqXZpYSBlIGV4cHJlc3NhIHBhcmEgbyBkZXDDs3NpdG8gZSBkaXZ1bGdhw6fDo28gZGEgT2JyYSwgYWJyYW5nZW5kbyB0b2RvcyBvcyBkaXJlaXRvcyBhdXRvcmFpcyBlIGNvbmV4b3MgYWZldGFkb3MgcGVsYSBhc3NpbmF0dXJhIGRvcyBwcmVzZW50ZXMgdGVybW9zIGRlIGxpY2VuY2lhbWVudG8sIGRlIG1vZG8gYSBlZmV0aXZhbWVudGUgaXNlbnRhciBhIEZ1bmRhw6fDo28gR2V0dWxpbyBWYXJnYXMgZSBzZXVzIGZ1bmNpb27DoXJpb3MgZGUgcXVhbHF1ZXIgcmVzcG9uc2FiaWxpZGFkZSBwZWxvIHVzbyBuw6NvLWF1dG9yaXphZG8gZG8gbWF0ZXJpYWwgZGVwb3NpdGFkbywgc2VqYSBlbSB2aW5jdWxhw6fDo28gw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgc2VqYSBlbSB2aW5jdWxhw6fDo28gYSBxdWFpc3F1ZXIgc2VydmnDp29zIGRlIGJ1c2NhIGUgZGlzdHJpYnVpw6fDo28gZGUgY29udGXDumRvIHF1ZSBmYcOnYW0gdXNvIGRhcyBpbnRlcmZhY2VzIGUgZXNwYcOnbyBkZSBhcm1hemVuYW1lbnRvIHByb3ZpZGVuY2lhZG9zIHBlbGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBwb3IgbWVpbyBkZSBzZXVzIHNpc3RlbWFzIGluZm9ybWF0aXphZG9zLgoKMi4gQSBhc3NpbmF0dXJhIGRlc3RhIGxpY2Vuw6dhIHRlbSBjb21vIGNvbnNlccO8w6puY2lhIGEgdHJhbnNmZXLDqm5jaWEsIGEgdMOtdHVsbyBuw6NvLWV4Y2x1c2l2byBlIG7Do28tb25lcm9zbywgaXNlbnRhIGRvIHBhZ2FtZW50byBkZSByb3lhbHRpZXMgb3UgcXVhbHF1ZXIgb3V0cmEgY29udHJhcHJlc3Rhw6fDo28sIHBlY3VuacOhcmlhIG91IG7Do28sIMOgIEZ1bmRhw6fDo28gR2V0dWxpbyBWYXJnYXMsIGRvcyBkaXJlaXRvcyBkZSBhcm1hemVuYXIgZGlnaXRhbG1lbnRlLCByZXByb2R1emlyIGUgZGlzdHJpYnVpciBuYWNpb25hbCBlIGludGVybmFjaW9uYWxtZW50ZSBhIE9icmEsIGluY2x1aW5kby1zZSBvIHNldSByZXN1bW8vYWJzdHJhY3QsIHBvciBtZWlvcyBlbGV0csO0bmljb3MsIG5vIHNpdGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYW8gcMO6YmxpY28gZW0gZ2VyYWwsIGVtIHJlZ2ltZSBkZSBhY2Vzc28gYWJlcnRvLgoKMy4gQSBwcmVzZW50ZSBsaWNlbsOnYSB0YW1iw6ltIGFicmFuZ2UsIG5vcyBtZXNtb3MgdGVybW9zIGVzdGFiZWxlY2lkb3Mgbm8gaXRlbSAyLCBzdXByYSwgcXVhbHF1ZXIgZGlyZWl0byBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIGNhYsOtdmVsIGVtIHJlbGHDp8OjbyDDoCBPYnJhIG9yYSBkZXBvc2l0YWRhLCBpbmNsdWluZG8tc2Ugb3MgdXNvcyByZWZlcmVudGVzIMOgIHJlcHJlc2VudGHDp8OjbyBww7pibGljYSBlL291IGV4ZWN1w6fDo28gcMO6YmxpY2EsIGJlbSBjb21vIHF1YWxxdWVyIG91dHJhIG1vZGFsaWRhZGUgZGUgY29tdW5pY2HDp8OjbyBhbyBww7pibGljbyBxdWUgZXhpc3RhIG91IHZlbmhhIGEgZXhpc3Rpciwgbm9zIHRlcm1vcyBkbyBhcnRpZ28gNjggZSBzZWd1aW50ZXMgZGEgTGVpIDkuNjEwLzk4LCBuYSBleHRlbnPDo28gcXVlIGZvciBhcGxpY8OhdmVsIGFvcyBzZXJ2acOnb3MgcHJlc3RhZG9zIGFvIHDDumJsaWNvIHBlbGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHVi4KCjQuIEVzdGEgbGljZW7Dp2EgYWJyYW5nZSwgYWluZGEsIG5vcyBtZXNtb3MgdGVybW9zIGVzdGFiZWxlY2lkb3Mgbm8gaXRlbSAyLCBzdXByYSwgdG9kb3Mgb3MgZGlyZWl0b3MgY29uZXhvcyBkZSBhcnRpc3RhcyBpbnTDqXJwcmV0ZXMgb3UgZXhlY3V0YW50ZXMsIHByb2R1dG9yZXMgZm9ub2dyw6FmaWNvcyBvdSBlbXByZXNhcyBkZSByYWRpb2RpZnVzw6NvIHF1ZSBldmVudHVhbG1lbnRlIHNlamFtIGFwbGljw6F2ZWlzIGVtIHJlbGHDp8OjbyDDoCBvYnJhIGRlcG9zaXRhZGEsIGVtIGNvbmZvcm1pZGFkZSBjb20gbyByZWdpbWUgZml4YWRvIG5vIFTDrXR1bG8gViBkYSBMZWkgOS42MTAvOTguCgo1LiBTZSBhIE9icmEgZGVwb3NpdGFkYSBmb2kgb3Ugw6kgb2JqZXRvIGRlIGZpbmFuY2lhbWVudG8gcG9yIGluc3RpdHVpw6fDtWVzIGRlIGZvbWVudG8gw6AgcGVzcXVpc2Egb3UgcXVhbHF1ZXIgb3V0cmEgc2VtZWxoYW50ZSwgdm9jw6ogb3UgbyB0aXR1bGFyIGFzc2VndXJhIHF1ZSBjdW1wcml1IHRvZGFzIGFzIG9icmlnYcOnw7VlcyBxdWUgbGhlIGZvcmFtIGltcG9zdGFzIHBlbGEgaW5zdGl0dWnDp8OjbyBmaW5hbmNpYWRvcmEgZW0gcmF6w6NvIGRvIGZpbmFuY2lhbWVudG8sIGUgcXVlIG7Do28gZXN0w6EgY29udHJhcmlhbmRvIHF1YWxxdWVyIGRpc3Bvc2nDp8OjbyBjb250cmF0dWFsIHJlZmVyZW50ZSDDoCBwdWJsaWNhw6fDo28gZG8gY29udGXDumRvIG9yYSBzdWJtZXRpZG8gw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHVi4KCjYuIENhc28gYSBPYnJhIG9yYSBkZXBvc2l0YWRhIGVuY29udHJlLXNlIGxpY2VuY2lhZGEgc29iIHVtYSBsaWNlbsOnYSBDcmVhdGl2ZSBDb21tb25zIChxdWFscXVlciB2ZXJzw6NvKSwgc29iIGEgbGljZW7Dp2EgR05VIEZyZWUgRG9jdW1lbnRhdGlvbiBMaWNlbnNlIChxdWFscXVlciB2ZXJzw6NvKSwgb3Ugb3V0cmEgbGljZW7Dp2EgcXVhbGlmaWNhZGEgY29tbyBsaXZyZSBzZWd1bmRvIG9zIGNyaXTDqXJpb3MgZGEgRGVmaW5pdGlvbiBvZiBGcmVlIEN1bHR1cmFsIFdvcmtzIChkaXNwb27DrXZlbCBlbTogaHR0cDovL2ZyZWVkb21kZWZpbmVkLm9yZy9EZWZpbml0aW9uKSBvdSBGcmVlIFNvZnR3YXJlIERlZmluaXRpb24gKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vd3d3LmdudS5vcmcvcGhpbG9zb3BoeS9mcmVlLXN3Lmh0bWwpLCBvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbSBjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcyBsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIgYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEgaW50ZWdyYWwuCgpBbyBjb25jbHVpciBhIHByZXNlbnRlIGV0YXBhIGUgYXMgZXRhcGFzIHN1YnNlccO8ZW50ZXMgZG8gcHJvY2Vzc28gZGUgc3VibWlzc8OjbyBkZSBhcnF1aXZvcyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCB2b2PDqiBhdGVzdGEgcXVlIGxldSBlIGNvbmNvcmRhIGludGVncmFsbWVudGUgY29tIG9zIHRlcm1vcyBhY2ltYSBkZWxpbWl0YWRvcywgYXNzaW5hbmRvLW9zIHNlbSBmYXplciBxdWFscXVlciByZXNlcnZhIGUgbm92YW1lbnRlIGNvbmZpcm1hbmRvIHF1ZSBjdW1wcmUgb3MgcmVxdWlzaXRvcyBpbmRpY2Fkb3Mgbm8gaXRlbSAxLCBzdXByYS4KCkhhdmVuZG8gcXVhbHF1ZXIgZGlzY29yZMOibmNpYSBlbSByZWxhw6fDo28gYW9zIHByZXNlbnRlcyB0ZXJtb3Mgb3UgbsOjbyBzZSB2ZXJpZmljYW5kbyBvIGV4aWdpZG8gbm8gaXRlbSAxLCBzdXByYSwgdm9jw6ogZGV2ZSBpbnRlcnJvbXBlciBpbWVkaWF0YW1lbnRlIG8gcHJvY2Vzc28gZGUgc3VibWlzc8Ojby4gQSBjb250aW51aWRhZGUgZG8gcHJvY2Vzc28gZXF1aXZhbGUgw6AgYXNzaW5hdHVyYSBkZXN0ZSBkb2N1bWVudG8sIGNvbSB0b2RhcyBhcyBjb25zZXHDvMOqbmNpYXMgbmVsZSBwcmV2aXN0YXMsIHN1amVpdGFuZG8tc2UgbyBzaWduYXTDoXJpbyBhIHNhbsOnw7VlcyBjaXZpcyBlIGNyaW1pbmFpcyBjYXNvIG7Do28gc2VqYSB0aXR1bGFyIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXRyaW1vbmlhaXMgZS9vdSBjb25leG9zIGFwbGljw6F2ZWlzIMOgIE9icmEgZGVwb3NpdGFkYSBkdXJhbnRlIGVzdGUgcHJvY2Vzc28sIG91IGNhc28gbsOjbyB0ZW5oYSBvYnRpZG8gcHLDqXZpYSBlIGV4cHJlc3NhIGF1dG9yaXphw6fDo28gZG8gdGl0dWxhciBwYXJhIG8gZGVww7NzaXRvIGUgdG9kb3Mgb3MgdXNvcyBkYSBPYnJhIGVudm9sdmlkb3MuCgpQYXJhIGEgc29sdcOnw6NvIGRlIHF1YWxxdWVyIGTDunZpZGEgcXVhbnRvIGFvcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50byBlIG8gcHJvY2Vzc28gZGUgc3VibWlzc8OjbywgY2xpcXVlIG5vIGxpbmsgIkZhbGUgY29ub3NjbyIuCgpTZSB2b2PDqiB0aXZlciBkw7p2aWRhcyBzb2JyZSBlc3RhIGxpY2Vuw6dhLCBwb3IgZmF2b3IgZW50cmUgZW0gY29udGF0byBjb20gb3MgYWRtaW5pc3RyYWRvcmVzIGRvIFJlcG9zaXTDs3Jpby4K |
| dc.title.eng.fl_str_mv |
Adaptive exponential explicit integrators for stochastic differential equations |
| title |
Adaptive exponential explicit integrators for stochastic differential equations |
| spellingShingle |
Adaptive exponential explicit integrators for stochastic differential equations Maio, Pablo Aguiar De Stochastic differential equations Stochastic numerical methods Local linearization approach Adaptive time-step integrators A-stability Numerical analysis Equações diferenciais estocásticas Métodos numéricos estocásticos Métodos de linearização local Matemática Análise numérica Equações diferenciais estocásticas Algoritmos Matemática |
| title_short |
Adaptive exponential explicit integrators for stochastic differential equations |
| title_full |
Adaptive exponential explicit integrators for stochastic differential equations |
| title_fullStr |
Adaptive exponential explicit integrators for stochastic differential equations |
| title_full_unstemmed |
Adaptive exponential explicit integrators for stochastic differential equations |
| title_sort |
Adaptive exponential explicit integrators for stochastic differential equations |
| author |
Maio, Pablo Aguiar De |
| author_facet |
Maio, Pablo Aguiar De |
| author_role |
author |
| dc.contributor.unidadefgv.por.fl_str_mv |
Escolas::EMAp |
| dc.contributor.member.none.fl_str_mv |
Saporito, Yuri Fahham |
| dc.contributor.author.fl_str_mv |
Maio, Pablo Aguiar De |
| dc.contributor.advisor1.fl_str_mv |
Cruz Cancino, Hugo Alexander de la |
| contributor_str_mv |
Cruz Cancino, Hugo Alexander de la |
| dc.subject.eng.fl_str_mv |
Stochastic differential equations Stochastic numerical methods Local linearization approach Adaptive time-step integrators A-stability Numerical analysis |
| topic |
Stochastic differential equations Stochastic numerical methods Local linearization approach Adaptive time-step integrators A-stability Numerical analysis Equações diferenciais estocásticas Métodos numéricos estocásticos Métodos de linearização local Matemática Análise numérica Equações diferenciais estocásticas Algoritmos Matemática |
| dc.subject.por.fl_str_mv |
Equações diferenciais estocásticas Métodos numéricos estocásticos Métodos de linearização local |
| dc.subject.area.por.fl_str_mv |
Matemática |
| dc.subject.bibliodata.por.fl_str_mv |
Análise numérica Equações diferenciais estocásticas Algoritmos Matemática |
| description |
Esta tese apresenta novos métodos adaptativos para equações diferenciais estocásticas (EDEs) com ruído aditivo. Introduzimos técnicas inovadoras para embutir esquemas numéricos exponenciais, resultando em dois novos esquemas numéricos explícitos, embutidos e A-estáveis: o esquema de Linearização Local (LL) embutido e o esquema LL RungeKutta embutido. Além disso, apresentamos técnicas de otimização para o algoritmo de Padé, a fim de calcular de forma eficiente as exponenciais de matrizes exigidas por esses esquemas. A tese também fornece uma formulação abrangente para integradores numéricos com passo adaptativo, oferecendo uma nova estratégia adaptativa que trata de forma eficaz EDEs com níveis de ruído variáveis ao longo do intervalo de integração. Esses desenvolvimentos resultam em integradores explícitos adaptativos A-estáveis que, em geral, proporcionam o mesmo nível de precisão dos esquemas adaptativos explícitos instáveis, sendo particularmente eficientes para EDEs rígidas e com um custo computacional significativamente menor do que suas contrapartes instáveis |
| publishDate |
2024 |
| dc.date.issued.fl_str_mv |
2024-10-10 |
| dc.date.accessioned.fl_str_mv |
2025-01-14T17:34:08Z |
| dc.date.available.fl_str_mv |
2025-01-14T17:34:08Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10438/36342 |
| url |
https://hdl.handle.net/10438/36342 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional do FGV (FGV Repositório Digital) instname:Fundação Getulio Vargas (FGV) instacron:FGV |
| instname_str |
Fundação Getulio Vargas (FGV) |
| instacron_str |
FGV |
| institution |
FGV |
| reponame_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
| collection |
Repositório Institucional do FGV (FGV Repositório Digital) |
| bitstream.url.fl_str_mv |
https://repositorio.fgv.br/bitstreams/e26a97e5-7166-42d9-99b5-d1d1cec73d48/download https://repositorio.fgv.br/bitstreams/befa0520-0d36-4b6b-a0fc-59f8513e08cf/download https://repositorio.fgv.br/bitstreams/46500e65-126e-46d9-a0fb-b358c4a03207/download https://repositorio.fgv.br/bitstreams/61aeaf30-5349-478a-8249-228dae0dcd32/download |
| bitstream.checksum.fl_str_mv |
2835b9045ba56c8fe92204832fc897f1 2a4b67231f701c416a809246e7a10077 284c9ac5fcbdbfd5dac21089ce403806 d0ccd93c91cdd4faca35a9cf10efb568 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV) |
| repository.mail.fl_str_mv |
|
| _version_ |
1827846511214460928 |