Automação do processo de due diligence: como algoritmos podem cortar tempo e trazer eficiência às auditorias legais?

Detalhes bibliográficos
Autor(a) principal: Oliveira, Daniel Lopes da Silva Ferreira
Data de Publicação: 2018
Idioma: por
Título da fonte: Repositório Institucional do FGV (FGV Repositório Digital)
Texto Completo: http://hdl.handle.net/10438/24743
Resumo: The present work has the objective of studying and demonstrating that the current modus operandi of legal due diligences carried out by law firms has inefficiencies, which can be mitigated by the use of computational algorithms. For this, a Machine Learning prototype that uses n-grams and is based on the Bayes Theorem was developed. Its purpose is to show how it is possible to automate the initial work of mapping and identifying relevant contractual clauses in a legal audit of debentures’ deeds of issuance written in Portuguese, which is not done today. For the Total Issuance Value clause, the algorithm reached, on average, the F1 Score of 77.18%. In the Clause of Early Maturity by Change of Control, scored 74.41%. Finally, when exposed to the Clause of Early Maturity by Cross Default, the F1 Score of the prototype was 72.352%.
id FGV_4a72e13200adb8cc65e9a9af91f3cf00
oai_identifier_str oai:repositorio.fgv.br:10438/24743
network_acronym_str FGV
network_name_str Repositório Institucional do FGV (FGV Repositório Digital)
repository_id_str 3974
spelling Oliveira, Daniel Lopes da Silva FerreiraEscolas::DIREITO RIO2018-09-12T17:41:57Z2018-09-12T17:41:57Z2018-08http://hdl.handle.net/10438/24743The present work has the objective of studying and demonstrating that the current modus operandi of legal due diligences carried out by law firms has inefficiencies, which can be mitigated by the use of computational algorithms. For this, a Machine Learning prototype that uses n-grams and is based on the Bayes Theorem was developed. Its purpose is to show how it is possible to automate the initial work of mapping and identifying relevant contractual clauses in a legal audit of debentures’ deeds of issuance written in Portuguese, which is not done today. For the Total Issuance Value clause, the algorithm reached, on average, the F1 Score of 77.18%. In the Clause of Early Maturity by Change of Control, scored 74.41%. Finally, when exposed to the Clause of Early Maturity by Cross Default, the F1 Score of the prototype was 72.352%.O presente trabalho tem por objetivo estudar e demonstrar que o atual modus operandi das due diligences jurídicas realizadas por escritórios de advocacia possui ineficiências, que podem ser mitigadas com o uso de algoritmos computacionais. Para isso, foi desenvolvido um protótipo de classificador bayesiano que usa machine learning e n-gramas. O seu objetivo é mostrar como é possível automatizar o trabalho inicial de mapeamento e identificação de cláusulas contratuais relevantes em uma auditoria jurídica de escrituras de emissão de debêntures em português, o que não é feito hoje. Para a cláusula de Valor Total da Emissão, o classificador alcançou, na média, a Média F de 77,18%. Já na cláusula de Vencimento Antecipado por Alteração de Controle, obteve 74,41%. Por fim, quando exposto à de Vencimento Antecipado por Cross Default, a Média F do protótipo foi de 72,352%.porMachine learningAutomationLegal due diligenceComputational algorithmsAlgoritmos computacionaisAuditoria jurídicaAutomatizaçãoClientesDebênturesEscritórios de advocaciaFusões e aquisiçõesIneficiênciaClientsDireitoAutomação do processo de due diligence: como algoritmos podem cortar tempo e trazer eficiência às auditorias legais?TCinfo:eu-repo/semantics/publishedVersionreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVinfo:eu-repo/semantics/openAccessTEXTDANIEL LOPES DA SILVA FERREIRA OLIVEIRA.pdf.txtDANIEL LOPES DA SILVA FERREIRA OLIVEIRA.pdf.txtExtracted texttext/plain103213https://repositorio.fgv.br/bitstreams/0b53a884-fd76-416b-9d0b-e2d31604cdc6/download2f75111988ca89bc3458b7c9c910726bMD55ORIGINALDANIEL LOPES DA SILVA FERREIRA OLIVEIRA.pdfDANIEL LOPES DA SILVA FERREIRA OLIVEIRA.pdfapplication/pdf3300452https://repositorio.fgv.br/bitstreams/bb8e81f6-3f86-48f7-90f1-4572cece8bde/download2c1ef42b45d66f21291f3bd5fa113d4bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/93dda014-88a9-41b0-9000-dec8428997d7/downloaddfb340242cced38a6cca06c627998fa1MD52THUMBNAILDANIEL LOPES DA SILVA FERREIRA OLIVEIRA.pdf.jpgDANIEL LOPES DA SILVA FERREIRA OLIVEIRA.pdf.jpgGenerated Thumbnailimage/jpeg2875https://repositorio.fgv.br/bitstreams/c9493089-d41e-4db3-8b47-dd3daf6caf0b/downloada5c980800049d57d443d0ee0422d763bMD5610438/247432023-11-28 11:44:25.63open.accessoai:repositorio.fgv.br:10438/24743https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-28T11:44:25Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K
dc.title.por.fl_str_mv Automação do processo de due diligence: como algoritmos podem cortar tempo e trazer eficiência às auditorias legais?
title Automação do processo de due diligence: como algoritmos podem cortar tempo e trazer eficiência às auditorias legais?
spellingShingle Automação do processo de due diligence: como algoritmos podem cortar tempo e trazer eficiência às auditorias legais?
Oliveira, Daniel Lopes da Silva Ferreira
Machine learning
Automation
Legal due diligence
Computational algorithms
Algoritmos computacionais
Auditoria jurídica
Automatização
Clientes
Debêntures
Escritórios de advocacia
Fusões e aquisições
Ineficiência
Clients
Direito
title_short Automação do processo de due diligence: como algoritmos podem cortar tempo e trazer eficiência às auditorias legais?
title_full Automação do processo de due diligence: como algoritmos podem cortar tempo e trazer eficiência às auditorias legais?
title_fullStr Automação do processo de due diligence: como algoritmos podem cortar tempo e trazer eficiência às auditorias legais?
title_full_unstemmed Automação do processo de due diligence: como algoritmos podem cortar tempo e trazer eficiência às auditorias legais?
title_sort Automação do processo de due diligence: como algoritmos podem cortar tempo e trazer eficiência às auditorias legais?
author Oliveira, Daniel Lopes da Silva Ferreira
author_facet Oliveira, Daniel Lopes da Silva Ferreira
author_role author
dc.contributor.unidadefgv.por.fl_str_mv Escolas::DIREITO RIO
dc.contributor.author.fl_str_mv Oliveira, Daniel Lopes da Silva Ferreira
dc.subject.eng.fl_str_mv Machine learning
Automation
Legal due diligence
Computational algorithms
topic Machine learning
Automation
Legal due diligence
Computational algorithms
Algoritmos computacionais
Auditoria jurídica
Automatização
Clientes
Debêntures
Escritórios de advocacia
Fusões e aquisições
Ineficiência
Clients
Direito
dc.subject.por.fl_str_mv Algoritmos computacionais
Auditoria jurídica
Automatização
Clientes
Debêntures
Escritórios de advocacia
Fusões e aquisições
Ineficiência
Clients
dc.subject.area.por.fl_str_mv Direito
description The present work has the objective of studying and demonstrating that the current modus operandi of legal due diligences carried out by law firms has inefficiencies, which can be mitigated by the use of computational algorithms. For this, a Machine Learning prototype that uses n-grams and is based on the Bayes Theorem was developed. Its purpose is to show how it is possible to automate the initial work of mapping and identifying relevant contractual clauses in a legal audit of debentures’ deeds of issuance written in Portuguese, which is not done today. For the Total Issuance Value clause, the algorithm reached, on average, the F1 Score of 77.18%. In the Clause of Early Maturity by Change of Control, scored 74.41%. Finally, when exposed to the Clause of Early Maturity by Cross Default, the F1 Score of the prototype was 72.352%.
publishDate 2018
dc.date.accessioned.fl_str_mv 2018-09-12T17:41:57Z
dc.date.available.fl_str_mv 2018-09-12T17:41:57Z
dc.date.issued.fl_str_mv 2018-08
dc.type.driver.fl_str_mv TC
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10438/24743
url http://hdl.handle.net/10438/24743
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional do FGV (FGV Repositório Digital)
instname:Fundação Getulio Vargas (FGV)
instacron:FGV
instname_str Fundação Getulio Vargas (FGV)
instacron_str FGV
institution FGV
reponame_str Repositório Institucional do FGV (FGV Repositório Digital)
collection Repositório Institucional do FGV (FGV Repositório Digital)
bitstream.url.fl_str_mv https://repositorio.fgv.br/bitstreams/0b53a884-fd76-416b-9d0b-e2d31604cdc6/download
https://repositorio.fgv.br/bitstreams/bb8e81f6-3f86-48f7-90f1-4572cece8bde/download
https://repositorio.fgv.br/bitstreams/93dda014-88a9-41b0-9000-dec8428997d7/download
https://repositorio.fgv.br/bitstreams/c9493089-d41e-4db3-8b47-dd3daf6caf0b/download
bitstream.checksum.fl_str_mv 2f75111988ca89bc3458b7c9c910726b
2c1ef42b45d66f21291f3bd5fa113d4b
dfb340242cced38a6cca06c627998fa1
a5c980800049d57d443d0ee0422d763b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)
repository.mail.fl_str_mv
_version_ 1827846646761783296