Automação do processo de due diligence: como algoritmos podem cortar tempo e trazer eficiência às auditorias legais?
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2018 |
| Idioma: | por |
| Título da fonte: | Repositório Institucional do FGV (FGV Repositório Digital) |
| Texto Completo: | http://hdl.handle.net/10438/24743 |
Resumo: | The present work has the objective of studying and demonstrating that the current modus operandi of legal due diligences carried out by law firms has inefficiencies, which can be mitigated by the use of computational algorithms. For this, a Machine Learning prototype that uses n-grams and is based on the Bayes Theorem was developed. Its purpose is to show how it is possible to automate the initial work of mapping and identifying relevant contractual clauses in a legal audit of debentures’ deeds of issuance written in Portuguese, which is not done today. For the Total Issuance Value clause, the algorithm reached, on average, the F1 Score of 77.18%. In the Clause of Early Maturity by Change of Control, scored 74.41%. Finally, when exposed to the Clause of Early Maturity by Cross Default, the F1 Score of the prototype was 72.352%. |
| id |
FGV_4a72e13200adb8cc65e9a9af91f3cf00 |
|---|---|
| oai_identifier_str |
oai:repositorio.fgv.br:10438/24743 |
| network_acronym_str |
FGV |
| network_name_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
| repository_id_str |
3974 |
| spelling |
Oliveira, Daniel Lopes da Silva FerreiraEscolas::DIREITO RIO2018-09-12T17:41:57Z2018-09-12T17:41:57Z2018-08http://hdl.handle.net/10438/24743The present work has the objective of studying and demonstrating that the current modus operandi of legal due diligences carried out by law firms has inefficiencies, which can be mitigated by the use of computational algorithms. For this, a Machine Learning prototype that uses n-grams and is based on the Bayes Theorem was developed. Its purpose is to show how it is possible to automate the initial work of mapping and identifying relevant contractual clauses in a legal audit of debentures’ deeds of issuance written in Portuguese, which is not done today. For the Total Issuance Value clause, the algorithm reached, on average, the F1 Score of 77.18%. In the Clause of Early Maturity by Change of Control, scored 74.41%. Finally, when exposed to the Clause of Early Maturity by Cross Default, the F1 Score of the prototype was 72.352%.O presente trabalho tem por objetivo estudar e demonstrar que o atual modus operandi das due diligences jurídicas realizadas por escritórios de advocacia possui ineficiências, que podem ser mitigadas com o uso de algoritmos computacionais. Para isso, foi desenvolvido um protótipo de classificador bayesiano que usa machine learning e n-gramas. O seu objetivo é mostrar como é possível automatizar o trabalho inicial de mapeamento e identificação de cláusulas contratuais relevantes em uma auditoria jurídica de escrituras de emissão de debêntures em português, o que não é feito hoje. Para a cláusula de Valor Total da Emissão, o classificador alcançou, na média, a Média F de 77,18%. Já na cláusula de Vencimento Antecipado por Alteração de Controle, obteve 74,41%. Por fim, quando exposto à de Vencimento Antecipado por Cross Default, a Média F do protótipo foi de 72,352%.porMachine learningAutomationLegal due diligenceComputational algorithmsAlgoritmos computacionaisAuditoria jurídicaAutomatizaçãoClientesDebênturesEscritórios de advocaciaFusões e aquisiçõesIneficiênciaClientsDireitoAutomação do processo de due diligence: como algoritmos podem cortar tempo e trazer eficiência às auditorias legais?TCinfo:eu-repo/semantics/publishedVersionreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVinfo:eu-repo/semantics/openAccessTEXTDANIEL LOPES DA SILVA FERREIRA OLIVEIRA.pdf.txtDANIEL LOPES DA SILVA FERREIRA OLIVEIRA.pdf.txtExtracted texttext/plain103213https://repositorio.fgv.br/bitstreams/0b53a884-fd76-416b-9d0b-e2d31604cdc6/download2f75111988ca89bc3458b7c9c910726bMD55ORIGINALDANIEL LOPES DA SILVA FERREIRA OLIVEIRA.pdfDANIEL LOPES DA SILVA FERREIRA OLIVEIRA.pdfapplication/pdf3300452https://repositorio.fgv.br/bitstreams/bb8e81f6-3f86-48f7-90f1-4572cece8bde/download2c1ef42b45d66f21291f3bd5fa113d4bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/93dda014-88a9-41b0-9000-dec8428997d7/downloaddfb340242cced38a6cca06c627998fa1MD52THUMBNAILDANIEL LOPES DA SILVA FERREIRA OLIVEIRA.pdf.jpgDANIEL LOPES DA SILVA FERREIRA OLIVEIRA.pdf.jpgGenerated Thumbnailimage/jpeg2875https://repositorio.fgv.br/bitstreams/c9493089-d41e-4db3-8b47-dd3daf6caf0b/downloada5c980800049d57d443d0ee0422d763bMD5610438/247432023-11-28 11:44:25.63open.accessoai:repositorio.fgv.br:10438/24743https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-28T11:44:25Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K |
| dc.title.por.fl_str_mv |
Automação do processo de due diligence: como algoritmos podem cortar tempo e trazer eficiência às auditorias legais? |
| title |
Automação do processo de due diligence: como algoritmos podem cortar tempo e trazer eficiência às auditorias legais? |
| spellingShingle |
Automação do processo de due diligence: como algoritmos podem cortar tempo e trazer eficiência às auditorias legais? Oliveira, Daniel Lopes da Silva Ferreira Machine learning Automation Legal due diligence Computational algorithms Algoritmos computacionais Auditoria jurídica Automatização Clientes Debêntures Escritórios de advocacia Fusões e aquisições Ineficiência Clients Direito |
| title_short |
Automação do processo de due diligence: como algoritmos podem cortar tempo e trazer eficiência às auditorias legais? |
| title_full |
Automação do processo de due diligence: como algoritmos podem cortar tempo e trazer eficiência às auditorias legais? |
| title_fullStr |
Automação do processo de due diligence: como algoritmos podem cortar tempo e trazer eficiência às auditorias legais? |
| title_full_unstemmed |
Automação do processo de due diligence: como algoritmos podem cortar tempo e trazer eficiência às auditorias legais? |
| title_sort |
Automação do processo de due diligence: como algoritmos podem cortar tempo e trazer eficiência às auditorias legais? |
| author |
Oliveira, Daniel Lopes da Silva Ferreira |
| author_facet |
Oliveira, Daniel Lopes da Silva Ferreira |
| author_role |
author |
| dc.contributor.unidadefgv.por.fl_str_mv |
Escolas::DIREITO RIO |
| dc.contributor.author.fl_str_mv |
Oliveira, Daniel Lopes da Silva Ferreira |
| dc.subject.eng.fl_str_mv |
Machine learning Automation Legal due diligence Computational algorithms |
| topic |
Machine learning Automation Legal due diligence Computational algorithms Algoritmos computacionais Auditoria jurídica Automatização Clientes Debêntures Escritórios de advocacia Fusões e aquisições Ineficiência Clients Direito |
| dc.subject.por.fl_str_mv |
Algoritmos computacionais Auditoria jurídica Automatização Clientes Debêntures Escritórios de advocacia Fusões e aquisições Ineficiência Clients |
| dc.subject.area.por.fl_str_mv |
Direito |
| description |
The present work has the objective of studying and demonstrating that the current modus operandi of legal due diligences carried out by law firms has inefficiencies, which can be mitigated by the use of computational algorithms. For this, a Machine Learning prototype that uses n-grams and is based on the Bayes Theorem was developed. Its purpose is to show how it is possible to automate the initial work of mapping and identifying relevant contractual clauses in a legal audit of debentures’ deeds of issuance written in Portuguese, which is not done today. For the Total Issuance Value clause, the algorithm reached, on average, the F1 Score of 77.18%. In the Clause of Early Maturity by Change of Control, scored 74.41%. Finally, when exposed to the Clause of Early Maturity by Cross Default, the F1 Score of the prototype was 72.352%. |
| publishDate |
2018 |
| dc.date.accessioned.fl_str_mv |
2018-09-12T17:41:57Z |
| dc.date.available.fl_str_mv |
2018-09-12T17:41:57Z |
| dc.date.issued.fl_str_mv |
2018-08 |
| dc.type.driver.fl_str_mv |
TC |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10438/24743 |
| url |
http://hdl.handle.net/10438/24743 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional do FGV (FGV Repositório Digital) instname:Fundação Getulio Vargas (FGV) instacron:FGV |
| instname_str |
Fundação Getulio Vargas (FGV) |
| instacron_str |
FGV |
| institution |
FGV |
| reponame_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
| collection |
Repositório Institucional do FGV (FGV Repositório Digital) |
| bitstream.url.fl_str_mv |
https://repositorio.fgv.br/bitstreams/0b53a884-fd76-416b-9d0b-e2d31604cdc6/download https://repositorio.fgv.br/bitstreams/bb8e81f6-3f86-48f7-90f1-4572cece8bde/download https://repositorio.fgv.br/bitstreams/93dda014-88a9-41b0-9000-dec8428997d7/download https://repositorio.fgv.br/bitstreams/c9493089-d41e-4db3-8b47-dd3daf6caf0b/download |
| bitstream.checksum.fl_str_mv |
2f75111988ca89bc3458b7c9c910726b 2c1ef42b45d66f21291f3bd5fa113d4b dfb340242cced38a6cca06c627998fa1 a5c980800049d57d443d0ee0422d763b |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV) |
| repository.mail.fl_str_mv |
|
| _version_ |
1827846646761783296 |