Prevalence estimation and binary regression methods for respondent-driven sampling with outcome uncertainty
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2021 |
| Idioma: | eng |
| Título da fonte: | Repositório Institucional do FGV (FGV Repositório Digital) |
| Texto Completo: | https://hdl.handle.net/10438/31844 |
Resumo: | Trabalho de conclusão de curso |
| id |
FGV_07659cc3f0cac82e236f05f20a38a058 |
|---|---|
| oai_identifier_str |
oai:repositorio.fgv.br:10438/31844 |
| network_acronym_str |
FGV |
| network_name_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
| repository_id_str |
3974 |
| spelling |
Moschen, Lucas MachadoEscolas::EMApCarvalho, Luiz Max Fagundes de2022-04-18T12:19:53Z2022-04-18T12:19:53Z2021-12https://hdl.handle.net/10438/31844Trabalho de conclusão de cursoHard-to-reach populations are difficult to access for researchers or refuse to enrol in public health surveys, making enumeration and sampling challenges. Respondent-driven sampling (RDS) is a chain-referral technique used to recruit individuals from hard-to-reach populations. The survey encourages the participants to recruit their peers, giving incentives to each recruitment and for participation. Since there is no enumeration of the subjects, RDS is a non-probabilistic sampling strategy. Moreover, the graphical structure of RDS suffers from missing data, and several assumptions about the recruitment process are necessary. After having the sampled individuals, understanding their characteristics is a focus in epidemiology, given that these are usually high-risk populations to some diseases. Therefore, estimating the disease prevalence, the proportion of infected individuals, and the dependence among other observed variables is a critical step for public decision making. Diagnostic tests for disease identification are subject to misclassification, and incorporating their accuracy corrects biases in the prevalence estimation problem. This work proposes the use of regression techniques for prevalence estimation in respondent-driven samples. We use conditionally autoregressive models to represent correlation among the individuals induced by recruitment. In modern statistics, understanding situations with unknown information and quantifying them plays a significant role. We use Bayesian inference for uncertainty quantification for our models. In the Bayesian paradigm, probability distributions for quantities of interest represent the belief about them. We discuss different prior specification approaches for the parameters and examine uncertainty about the graph structure using a graphical model of RDS. To perform sampling from the parameter distribution, we used the Hamiltonian Monte Carlo sampler. Diagnostics of this method helped to improve our model programming. Verification of the model through simulation and external datasets showed robust results, and we propose model extensions for the limitations of this work.Populações de difícil acesso são difíceis para pesquisadores se aproximarem ou se recusam a se inscrever em pesquisas de saúde pública, tornando a enumeração e amostragem desafios. O Respondent-driven sampling (RDS) é uma técnica de referência em cadeia usada para recrutar indivíduos de populações difíceis de alcançar. A pesquisa incentiva os participantes a recrutarem seus pares, dando incentivos a cada recrutamento e à participação. Como não há enumeração dos sujeitos, o RDS é uma estratégia de amostragem não probabilística. Além disso, a estrutura gráfica do RDS sofre com a falta de dados e várias suposições sobre o processo de recrutamento são necessárias. Após a obtenção dos indivíduos amostrados, o entendimento de suas características é foco da epidemiologia, visto que se trata de populações geralmente de alto risco para algumas doenças. Portanto, estimar a prevalência da doença, a proporção de indivíduos infectados e a dependência a outras variáveis observadas é uma etapa crítica para a tomada de decisão pública. Os testes de diagnóstico para identificação de doenças estão sujeitos a erros de classificação e incorporar suas acurácias corrige vieses no problema de estimação de prevalência. Este trabalho propõe o uso de técnicas de regressão para estimativa de prevalência em Respondent-driven sampling. Usamos modelos condicionalmente autorregressivos para representar a correlação entre os indivíduos induzida pelo recrutamento. Na estatística moderna, entender situações com informações desconhecidas e quantificá-las desempenha um papel significativo. Usamos inferência bayesiana para quantificação de incerteza para nossos modelos. No paradigma bayesiano, as distribuições de probabilidade para quantidades de interesse representam a crença sobre elas. Discutimos diferentes abordagens de especificação anterior para os parâmetros e examinamos a incerteza sobre a estrutura do grafo usando um modelo gráfico de RDS. Para realizar a amostragem da distribuição dos parâmetros, usamos o amostrador Hamiltonian Monte Carlo. Os diagnósticos deste método ajudaram a melhorar a programação do nosso modelo. A verificação do modelo por meio de simulação e conjuntos de dados externos mostrou resultados robustos, e propomos extensões do modelo para as limitações deste trabalho.engRespondent-driven samplingRegression analysisBayesian inferencePrevalence estimationMisclassificationSensitivitySpecificityAnálise de regressãoInferência bayesianaEstimação de prevalênciaClassificação erradaSensibilidadeEspecificidadeMatemáticaTeoria bayesiana de decisão estatísticaAmostragem (Estatística)Estudos transversaisAnálise de regressãoPrevalence estimation and binary regression methods for respondent-driven sampling with outcome uncertaintyTCinfo:eu-repo/semantics/publishedVersionreponame:Repositório Institucional do FGV (FGV Repositório Digital)instname:Fundação Getulio Vargas (FGV)instacron:FGVinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-84707https://repositorio.fgv.br/bitstreams/3042a754-7979-40c6-a472-3e2867fcf629/downloaddfb340242cced38a6cca06c627998fa1MD52ORIGINALTCC - Lucas Moschen.pdfTCC - Lucas Moschen.pdfTrabalho de conclusão de curso - Lucas Machado Moschenapplication/pdf10467925https://repositorio.fgv.br/bitstreams/3f27ae87-d6fd-4014-9013-08e745e42d71/download66542ed2b0baa17ec9a46cc44be11b82MD51TEXTTCC - Lucas Moschen.pdf.txtTCC - Lucas Moschen.pdf.txtExtracted texttext/plain101755https://repositorio.fgv.br/bitstreams/ecbd078e-0441-4c4f-acf7-679a1884e447/download9acb883ac4322dd407d60f83c400da30MD55THUMBNAILTCC - Lucas Moschen.pdf.jpgTCC - Lucas Moschen.pdf.jpgGenerated Thumbnailimage/jpeg2942https://repositorio.fgv.br/bitstreams/2e5492f3-be2b-4202-b698-661e9efdfaac/download87924e41769eb8abea3c68e8133970ecMD5610438/318442023-11-25 05:05:36.574open.accessoai:repositorio.fgv.br:10438/31844https://repositorio.fgv.brRepositório InstitucionalPRIhttp://bibliotecadigital.fgv.br/dspace-oai/requestopendoar:39742023-11-25T05:05:36Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV)falseVEVSTU9TIExJQ0VOQ0lBTUVOVE8gUEFSQSBBUlFVSVZBTUVOVE8sIFJFUFJPRFXDh8ODTyBFIERJVlVMR0HDh8ODTwpQw5pCTElDQSBERSBDT05URcOaRE8gw4AgQklCTElPVEVDQSBWSVJUVUFMIEZHViAodmVyc8OjbyAxLjIpCgoxLiBWb2PDqiwgdXN1w6FyaW8tZGVwb3NpdGFudGUgZGEgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgYXNzZWd1cmEsIG5vCnByZXNlbnRlIGF0bywgcXVlIMOpIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhdHJpbW9uaWFpcyBlL291CmRpcmVpdG9zIGNvbmV4b3MgcmVmZXJlbnRlcyDDoCB0b3RhbGlkYWRlIGRhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW0KZm9ybWF0byBkaWdpdGFsLCBiZW0gY29tbyBkZSBzZXVzIGNvbXBvbmVudGVzIG1lbm9yZXMsIGVtIHNlIHRyYXRhbmRvCmRlIG9icmEgY29sZXRpdmEsIGNvbmZvcm1lIG8gcHJlY2VpdHVhZG8gcGVsYSBMZWkgOS42MTAvOTggZS9vdSBMZWkKOS42MDkvOTguIE7Do28gc2VuZG8gZXN0ZSBvIGNhc28sIHZvY8OqIGFzc2VndXJhIHRlciBvYnRpZG8sIGRpcmV0YW1lbnRlCmRvcyBkZXZpZG9zIHRpdHVsYXJlcywgYXV0b3JpemHDp8OjbyBwcsOpdmlhIGUgZXhwcmVzc2EgcGFyYSBvIGRlcMOzc2l0byBlCmRpdnVsZ2HDp8OjbyBkYSBPYnJhLCBhYnJhbmdlbmRvIHRvZG9zIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGUgY29uZXhvcwphZmV0YWRvcyBwZWxhIGFzc2luYXR1cmEgZG9zIHByZXNlbnRlcyB0ZXJtb3MgZGUgbGljZW5jaWFtZW50bywgZGUKbW9kbyBhIGVmZXRpdmFtZW50ZSBpc2VudGFyIGEgRnVuZGHDp8OjbyBHZXR1bGlvIFZhcmdhcyBlIHNldXMKZnVuY2lvbsOhcmlvcyBkZSBxdWFscXVlciByZXNwb25zYWJpbGlkYWRlIHBlbG8gdXNvIG7Do28tYXV0b3JpemFkbyBkbwptYXRlcmlhbCBkZXBvc2l0YWRvLCBzZWphIGVtIHZpbmN1bGHDp8OjbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLCBzZWphCmVtIHZpbmN1bGHDp8OjbyBhIHF1YWlzcXVlciBzZXJ2acOnb3MgZGUgYnVzY2EgZSBkaXN0cmlidWnDp8OjbyBkZSBjb250ZcO6ZG8KcXVlIGZhw6dhbSB1c28gZGFzIGludGVyZmFjZXMgZSBlc3Bhw6dvIGRlIGFybWF6ZW5hbWVudG8gcHJvdmlkZW5jaWFkb3MKcGVsYSBGdW5kYcOnw6NvIEdldHVsaW8gVmFyZ2FzIHBvciBtZWlvIGRlIHNldXMgc2lzdGVtYXMgaW5mb3JtYXRpemFkb3MuCgoyLiBBIGFzc2luYXR1cmEgZGVzdGEgbGljZW7Dp2EgdGVtIGNvbW8gY29uc2Vxw7zDqm5jaWEgYSB0cmFuc2ZlcsOqbmNpYSwgYQp0w610dWxvIG7Do28tZXhjbHVzaXZvIGUgbsOjby1vbmVyb3NvLCBpc2VudGEgZG8gcGFnYW1lbnRvIGRlIHJveWFsdGllcwpvdSBxdWFscXVlciBvdXRyYSBjb250cmFwcmVzdGHDp8OjbywgcGVjdW5pw6FyaWEgb3UgbsOjbywgw6AgRnVuZGHDp8OjbwpHZXR1bGlvIFZhcmdhcywgZG9zIGRpcmVpdG9zIGRlIGFybWF6ZW5hciBkaWdpdGFsbWVudGUsIHJlcHJvZHV6aXIgZQpkaXN0cmlidWlyIG5hY2lvbmFsIGUgaW50ZXJuYWNpb25hbG1lbnRlIGEgT2JyYSwgaW5jbHVpbmRvLXNlIG8gc2V1CnJlc3Vtby9hYnN0cmFjdCwgcG9yIG1laW9zIGVsZXRyw7RuaWNvcywgbm8gc2l0ZSBkYSBCaWJsaW90ZWNhIFZpcnR1YWwKRkdWLCBhbyBww7pibGljbyBlbSBnZXJhbCwgZW0gcmVnaW1lIGRlIGFjZXNzbyBhYmVydG8uCgozLiBBIHByZXNlbnRlIGxpY2Vuw6dhIHRhbWLDqW0gYWJyYW5nZSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcwpubyBpdGVtIDIsIHN1cHJhLCBxdWFscXVlciBkaXJlaXRvIGRlIGNvbXVuaWNhw6fDo28gYW8gcMO6YmxpY28gY2Fiw612ZWwKZW0gcmVsYcOnw6NvIMOgIE9icmEgb3JhIGRlcG9zaXRhZGEsIGluY2x1aW5kby1zZSBvcyB1c29zIHJlZmVyZW50ZXMgw6AKcmVwcmVzZW50YcOnw6NvIHDDumJsaWNhIGUvb3UgZXhlY3XDp8OjbyBww7pibGljYSwgYmVtIGNvbW8gcXVhbHF1ZXIgb3V0cmEKbW9kYWxpZGFkZSBkZSBjb211bmljYcOnw6NvIGFvIHDDumJsaWNvIHF1ZSBleGlzdGEgb3UgdmVuaGEgYSBleGlzdGlyLApub3MgdGVybW9zIGRvIGFydGlnbyA2OCBlIHNlZ3VpbnRlcyBkYSBMZWkgOS42MTAvOTgsIG5hIGV4dGVuc8OjbyBxdWUKZm9yIGFwbGljw6F2ZWwgYW9zIHNlcnZpw6dvcyBwcmVzdGFkb3MgYW8gcMO6YmxpY28gcGVsYSBCaWJsaW90ZWNhClZpcnR1YWwgRkdWLgoKNC4gRXN0YSBsaWNlbsOnYSBhYnJhbmdlLCBhaW5kYSwgbm9zIG1lc21vcyB0ZXJtb3MgZXN0YWJlbGVjaWRvcyBubwppdGVtIDIsIHN1cHJhLCB0b2RvcyBvcyBkaXJlaXRvcyBjb25leG9zIGRlIGFydGlzdGFzIGludMOpcnByZXRlcyBvdQpleGVjdXRhbnRlcywgcHJvZHV0b3JlcyBmb25vZ3LDoWZpY29zIG91IGVtcHJlc2FzIGRlIHJhZGlvZGlmdXPDo28gcXVlCmV2ZW50dWFsbWVudGUgc2VqYW0gYXBsaWPDoXZlaXMgZW0gcmVsYcOnw6NvIMOgIG9icmEgZGVwb3NpdGFkYSwgZW0KY29uZm9ybWlkYWRlIGNvbSBvIHJlZ2ltZSBmaXhhZG8gbm8gVMOtdHVsbyBWIGRhIExlaSA5LjYxMC85OC4KCjUuIFNlIGEgT2JyYSBkZXBvc2l0YWRhIGZvaSBvdSDDqSBvYmpldG8gZGUgZmluYW5jaWFtZW50byBwb3IKaW5zdGl0dWnDp8O1ZXMgZGUgZm9tZW50byDDoCBwZXNxdWlzYSBvdSBxdWFscXVlciBvdXRyYSBzZW1lbGhhbnRlLCB2b2PDqgpvdSBvIHRpdHVsYXIgYXNzZWd1cmEgcXVlIGN1bXByaXUgdG9kYXMgYXMgb2JyaWdhw6fDtWVzIHF1ZSBsaGUgZm9yYW0KaW1wb3N0YXMgcGVsYSBpbnN0aXR1acOnw6NvIGZpbmFuY2lhZG9yYSBlbSByYXrDo28gZG8gZmluYW5jaWFtZW50bywgZQpxdWUgbsOjbyBlc3TDoSBjb250cmFyaWFuZG8gcXVhbHF1ZXIgZGlzcG9zacOnw6NvIGNvbnRyYXR1YWwgcmVmZXJlbnRlIMOgCnB1YmxpY2HDp8OjbyBkbyBjb250ZcO6ZG8gb3JhIHN1Ym1ldGlkbyDDoCBCaWJsaW90ZWNhIFZpcnR1YWwgRkdWLgoKNi4gQ2FzbyBhIE9icmEgb3JhIGRlcG9zaXRhZGEgZW5jb250cmUtc2UgbGljZW5jaWFkYSBzb2IgdW1hIGxpY2Vuw6dhCkNyZWF0aXZlIENvbW1vbnMgKHF1YWxxdWVyIHZlcnPDo28pLCBzb2IgYSBsaWNlbsOnYSBHTlUgRnJlZQpEb2N1bWVudGF0aW9uIExpY2Vuc2UgKHF1YWxxdWVyIHZlcnPDo28pLCBvdSBvdXRyYSBsaWNlbsOnYSBxdWFsaWZpY2FkYQpjb21vIGxpdnJlIHNlZ3VuZG8gb3MgY3JpdMOpcmlvcyBkYSBEZWZpbml0aW9uIG9mIEZyZWUgQ3VsdHVyYWwgV29ya3MKKGRpc3BvbsOtdmVsIGVtOiBodHRwOi8vZnJlZWRvbWRlZmluZWQub3JnL0RlZmluaXRpb24pIG91IEZyZWUgU29mdHdhcmUKRGVmaW5pdGlvbiAoZGlzcG9uw612ZWwgZW06IGh0dHA6Ly93d3cuZ251Lm9yZy9waGlsb3NvcGh5L2ZyZWUtc3cuaHRtbCksIApvIGFycXVpdm8gcmVmZXJlbnRlIMOgIE9icmEgZGV2ZSBpbmRpY2FyIGEgbGljZW7Dp2EgYXBsaWPDoXZlbCBlbQpjb250ZcO6ZG8gbGVnw612ZWwgcG9yIHNlcmVzIGh1bWFub3MgZSwgc2UgcG9zc8OtdmVsLCB0YW1iw6ltIGVtIG1ldGFkYWRvcwpsZWfDrXZlaXMgcG9yIG3DoXF1aW5hLiBBIGluZGljYcOnw6NvIGRhIGxpY2Vuw6dhIGFwbGljw6F2ZWwgZGV2ZSBzZXIKYWNvbXBhbmhhZGEgZGUgdW0gbGluayBwYXJhIG9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIG91IHN1YSBjw7NwaWEKaW50ZWdyYWwuCgoKQW8gY29uY2x1aXIgYSBwcmVzZW50ZSBldGFwYSBlIGFzIGV0YXBhcyBzdWJzZXHDvGVudGVzIGRvIHByb2Nlc3NvIGRlCnN1Ym1pc3PDo28gZGUgYXJxdWl2b3Mgw6AgQmlibGlvdGVjYSBWaXJ0dWFsIEZHViwgdm9jw6ogYXRlc3RhIHF1ZSBsZXUgZQpjb25jb3JkYSBpbnRlZ3JhbG1lbnRlIGNvbSBvcyB0ZXJtb3MgYWNpbWEgZGVsaW1pdGFkb3MsIGFzc2luYW5kby1vcwpzZW0gZmF6ZXIgcXVhbHF1ZXIgcmVzZXJ2YSBlIG5vdmFtZW50ZSBjb25maXJtYW5kbyBxdWUgY3VtcHJlIG9zCnJlcXVpc2l0b3MgaW5kaWNhZG9zIG5vIGl0ZW0gMSwgc3VwcmEuCgpIYXZlbmRvIHF1YWxxdWVyIGRpc2NvcmTDom5jaWEgZW0gcmVsYcOnw6NvIGFvcyBwcmVzZW50ZXMgdGVybW9zIG91IG7Do28Kc2UgdmVyaWZpY2FuZG8gbyBleGlnaWRvIG5vIGl0ZW0gMSwgc3VwcmEsIHZvY8OqIGRldmUgaW50ZXJyb21wZXIKaW1lZGlhdGFtZW50ZSBvIHByb2Nlc3NvIGRlIHN1Ym1pc3PDo28uIEEgY29udGludWlkYWRlIGRvIHByb2Nlc3NvCmVxdWl2YWxlIMOgIGFzc2luYXR1cmEgZGVzdGUgZG9jdW1lbnRvLCBjb20gdG9kYXMgYXMgY29uc2Vxw7zDqm5jaWFzIG5lbGUKcHJldmlzdGFzLCBzdWplaXRhbmRvLXNlIG8gc2lnbmF0w6FyaW8gYSBzYW7Dp8O1ZXMgY2l2aXMgZSBjcmltaW5haXMgY2Fzbwpuw6NvIHNlamEgdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGF0cmltb25pYWlzIGUvb3UgY29uZXhvcwphcGxpY8OhdmVpcyDDoCBPYnJhIGRlcG9zaXRhZGEgZHVyYW50ZSBlc3RlIHByb2Nlc3NvLCBvdSBjYXNvIG7Do28gdGVuaGEKb2J0aWRvIHByw6l2aWEgZSBleHByZXNzYSBhdXRvcml6YcOnw6NvIGRvIHRpdHVsYXIgcGFyYSBvIGRlcMOzc2l0byBlCnRvZG9zIG9zIHVzb3MgZGEgT2JyYSBlbnZvbHZpZG9zLgoKClBhcmEgYSBzb2x1w6fDo28gZGUgcXVhbHF1ZXIgZMO6dmlkYSBxdWFudG8gYW9zIHRlcm1vcyBkZSBsaWNlbmNpYW1lbnRvIGUKbyBwcm9jZXNzbyBkZSBzdWJtaXNzw6NvLCBjbGlxdWUgbm8gbGluayAiRmFsZSBjb25vc2NvIi4K |
| dc.title.por.fl_str_mv |
Prevalence estimation and binary regression methods for respondent-driven sampling with outcome uncertainty |
| title |
Prevalence estimation and binary regression methods for respondent-driven sampling with outcome uncertainty |
| spellingShingle |
Prevalence estimation and binary regression methods for respondent-driven sampling with outcome uncertainty Moschen, Lucas Machado Respondent-driven sampling Regression analysis Bayesian inference Prevalence estimation Misclassification Sensitivity Specificity Análise de regressão Inferência bayesiana Estimação de prevalência Classificação errada Sensibilidade Especificidade Matemática Teoria bayesiana de decisão estatística Amostragem (Estatística) Estudos transversais Análise de regressão |
| title_short |
Prevalence estimation and binary regression methods for respondent-driven sampling with outcome uncertainty |
| title_full |
Prevalence estimation and binary regression methods for respondent-driven sampling with outcome uncertainty |
| title_fullStr |
Prevalence estimation and binary regression methods for respondent-driven sampling with outcome uncertainty |
| title_full_unstemmed |
Prevalence estimation and binary regression methods for respondent-driven sampling with outcome uncertainty |
| title_sort |
Prevalence estimation and binary regression methods for respondent-driven sampling with outcome uncertainty |
| author |
Moschen, Lucas Machado |
| author_facet |
Moschen, Lucas Machado |
| author_role |
author |
| dc.contributor.unidadefgv.por.fl_str_mv |
Escolas::EMAp |
| dc.contributor.author.fl_str_mv |
Moschen, Lucas Machado |
| dc.contributor.advisor1.fl_str_mv |
Carvalho, Luiz Max Fagundes de |
| contributor_str_mv |
Carvalho, Luiz Max Fagundes de |
| dc.subject.por.fl_str_mv |
Respondent-driven sampling Regression analysis Bayesian inference Prevalence estimation Misclassification Sensitivity Specificity Análise de regressão Inferência bayesiana Estimação de prevalência Classificação errada Sensibilidade Especificidade |
| topic |
Respondent-driven sampling Regression analysis Bayesian inference Prevalence estimation Misclassification Sensitivity Specificity Análise de regressão Inferência bayesiana Estimação de prevalência Classificação errada Sensibilidade Especificidade Matemática Teoria bayesiana de decisão estatística Amostragem (Estatística) Estudos transversais Análise de regressão |
| dc.subject.area.por.fl_str_mv |
Matemática |
| dc.subject.bibliodata.por.fl_str_mv |
Teoria bayesiana de decisão estatística Amostragem (Estatística) Estudos transversais Análise de regressão |
| description |
Trabalho de conclusão de curso |
| publishDate |
2021 |
| dc.date.issued.fl_str_mv |
2021-12 |
| dc.date.accessioned.fl_str_mv |
2022-04-18T12:19:53Z |
| dc.date.available.fl_str_mv |
2022-04-18T12:19:53Z |
| dc.type.driver.fl_str_mv |
TC |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10438/31844 |
| url |
https://hdl.handle.net/10438/31844 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional do FGV (FGV Repositório Digital) instname:Fundação Getulio Vargas (FGV) instacron:FGV |
| instname_str |
Fundação Getulio Vargas (FGV) |
| instacron_str |
FGV |
| institution |
FGV |
| reponame_str |
Repositório Institucional do FGV (FGV Repositório Digital) |
| collection |
Repositório Institucional do FGV (FGV Repositório Digital) |
| bitstream.url.fl_str_mv |
https://repositorio.fgv.br/bitstreams/3042a754-7979-40c6-a472-3e2867fcf629/download https://repositorio.fgv.br/bitstreams/3f27ae87-d6fd-4014-9013-08e745e42d71/download https://repositorio.fgv.br/bitstreams/ecbd078e-0441-4c4f-acf7-679a1884e447/download https://repositorio.fgv.br/bitstreams/2e5492f3-be2b-4202-b698-661e9efdfaac/download |
| bitstream.checksum.fl_str_mv |
dfb340242cced38a6cca06c627998fa1 66542ed2b0baa17ec9a46cc44be11b82 9acb883ac4322dd407d60f83c400da30 87924e41769eb8abea3c68e8133970ec |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional do FGV (FGV Repositório Digital) - Fundação Getulio Vargas (FGV) |
| repository.mail.fl_str_mv |
|
| _version_ |
1827846501544493056 |