Estimation of genetic diversity in viral populations from next generation sequencing data with extremely deep coverage
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2016 |
| Outros Autores: | , , , , |
| Tipo de documento: | Artigo |
| Idioma: | eng |
| Título da fonte: | Repositório Institucional da FIOCRUZ (ARCA) |
| DOI: | 10.1186/s13015-016-0064-x. eCollection 2016 |
| Texto Completo: | https://arca.fiocruz.br/handle/icict/15354 |
Resumo: | Universidade Federal de São Paulo. Escola Paulista de Medicina. Departamento de Medicina. São Paulo, SP, Brasil. |
| id |
CRUZ_b734185702b0ce9f2f9d9ac4de2f50cc |
|---|---|
| oai_identifier_str |
oai:arca.fiocruz.br:icict/15354 |
| network_acronym_str |
CRUZ |
| network_name_str |
Repositório Institucional da FIOCRUZ (ARCA) |
| repository_id_str |
2135 |
| spelling |
Zukurov, Jean Paulo LopesBrito, Sieberth do NascimentoVolpini, Angela CristinaOliveira, Guilherme Corrêa deJanini, Luiz Mario RamosAntoneli Junior, Fernando Martins2016-08-23T18:44:25Z2016-08-23T18:44:25Z2016ZUKUROV, Jean Paulo Lopes et al. Estimation of genetic diversity in viral populations from next generation sequencing data with extremely deep coverage. Algorithms Mol Biol., v. 11, p. 2, 20161748-7188https://arca.fiocruz.br/handle/icict/1535410.1186/s13015-016-0064-x. eCollection 2016engBioMed CentralEstimation of genetic diversity in viral populations from next generation sequencing data with extremely deep coverageinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleUniversidade Federal de São Paulo. Escola Paulista de Medicina. Departamento de Medicina. São Paulo, SP, Brasil.Universidade Federal de São Paulo. Escola Paulista de Medicina. Departamento de Microbiologia. São Paulo, SP, Brasil/ Universidade Federal Rural do Rio de Janeiro. Departamento de Microbiologia e Imunologia Veterinária. Rio de Janeiro, RJ, BrasilFundação Oswaldo Cruz. Centro de Pesquisas René Rachou. Grupo de Genomica e Biologia Computacional. Belo Horizonte, MG, Brasil.Fundação Oswaldo Cruz. Centro de Pesquisas René Rachou. Grupo de Genomica e Biologia Computacional. Belo Horizonte, MG, Brasil.Universidade Federal de São Paulo. Escola Paulista de Medicina. Departamento de Medicina. São Paulo, SP, Brasil/Universidade Federal de São Paulo. Escola Paulista de Medicina. Departamento de Microbiologia. São Paulo, SP, Brasil.Universidade Federal de São Paulo. Escola Paulista de Medicina. Departamento de Informática em Saúde. São Paulo, SP, Brasil/Universidade Federal de São Paulo. Escola Paulista de Medicina. Laboratório de Biocomplexidade e Genômica Evolutiva. São Paulo, SP, BrasilBACKGROUND: In this paper we propose a method and discuss its computational implementation as an integrated tool for the analysis of viral genetic diversity on data generated by high-throughput sequencing. The main motivation for this work is to better understand the genetic diversity of viruses with high rates of nucleotide substitution, as HIV-1 and Influenza. Most methods for viral diversity estimation proposed so far are intended to take benefit of the longer reads produced by some next-generation sequencing platforms in order to estimate a population of haplotypes which represent the diversity of the original population. The method proposed here is custom-made to take advantage of the very low error rate and extremely deep coverage per site, which are the main features of some neglected technologies that have not received much attention due to the short length of its reads, which precludes haplotype estimation. This approach allowed us to avoid some hard problems related to haplotype reconstruction (need of long reads, preliminary error filtering and assembly). RESULTS: We propose to measure genetic diversity of a viral population through a family of multinomial probability distributions indexed by the sites of the virus genome, each one representing the distribution of nucleic bases per site. Moreover, the implementation of the method focuses on two main optimization strategies: a read mapping/alignment procedure that aims at the recovery of the maximum possible number of short-reads; the inference of the multinomial parameters in a Bayesian framework with smoothed Dirichlet estimation. The Bayesian approach provides conditional probability distributions for the multinomial parameters allowing one to take into account the prior information of the control experiment and providing a natural way to separate signal from noise, since it automatically furnishes Bayesian confidence intervals and thus avoids the drawbacks of preliminary error filtering. CONCLUSIONS: The methods described in this paper have been implemented as an integrated tool called Tanden (Tool for Analysis of Diversity in Viral Populations) and successfully tested on samples obtained from HIV-1 strain NL4-3 (group M, subtype B) cultivations on primary human cell cultures in many distinct viral propagation conditions.Bayesian inferenceDirichlet distributionViral diversity10 Redução das desigualdadesinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da FIOCRUZ (ARCA)instname:Fundação Oswaldo Cruz (FIOCRUZ)instacron:FIOCRUZLICENSElicense.txtlicense.txttext/plain; charset=utf-82991https://arca.fiocruz.br/bitstreams/bfd7c8c7-9f3a-44da-afa7-6b0d6a8920eb/download5a560609d32a3863062d77ff32785d58MD51falseAnonymousREADORIGINALve_Zukurov_Jean_Estimation_CPqRR_2016.pdfve_Zukurov_Jean_Estimation_CPqRR_2016.pdfapplication/pdf2592734https://arca.fiocruz.br/bitstreams/11f1f13b-eaa3-46fc-844e-157bd25db68c/download828bb4463862e79c125c937639dc1451MD52trueAnonymousREADTEXTve_Zukurov_Jean_Estimation_CPqRR_2016.pdf.txtve_Zukurov_Jean_Estimation_CPqRR_2016.pdf.txtExtracted texttext/plain73713https://arca.fiocruz.br/bitstreams/ce243bfa-7ad4-40e3-97b8-301c82bc1be4/download36f69eb8b82af605de6e63b1bbfbdc7cMD57falseAnonymousREADTHUMBNAILve_Zukurov_Jean_Estimation_CPqRR_2016.pdf.jpgve_Zukurov_Jean_Estimation_CPqRR_2016.pdf.jpgGenerated Thumbnailimage/jpeg5360https://arca.fiocruz.br/bitstreams/40a4f101-d792-4f6e-8d05-d50df0e11609/download03083704ad87debb7a3ee42ca17d932fMD58falseAnonymousREADicict/153542025-07-29 19:04:12.974open.accessoai:arca.fiocruz.br:icict/15354https://arca.fiocruz.brRepositório InstitucionalPUBhttps://www.arca.fiocruz.br/oai/requestrepositorio.arca@fiocruz.bropendoar:21352025-07-29T22:04:12Repositório Institucional da FIOCRUZ (ARCA) - Fundação Oswaldo Cruz (FIOCRUZ)falseQ0VTU8ODTyBOw4NPIEVYQ0xVU0lWQSBERSBESVJFSVRPUyBBVVRPUkFJUwoKQW8gYWNlaXRhciBvcyBURVJNT1MgZSBDT05EScOHw5VFUyBkZXN0YSBDRVNTw4NPLCBvIEFVVE9SIGUvb3UgVElUVUxBUiBkZSBkaXJlaXRvcwphdXRvcmFpcyBzb2JyZSBhIE9CUkEgZGUgcXVlIHRyYXRhIGVzdGUgZG9jdW1lbnRvOgoKKDEpIENFREUgZSBUUkFOU0ZFUkUsIHRvdGFsIGUgZ3JhdHVpdGFtZW50ZSwgw6AgRklPQ1JVWiAtIEZVTkRBw4fDg08gT1NXQUxETyBDUlVaLCBlbQpjYXLDoXRlciBwZXJtYW5lbnRlLCBpcnJldm9nw6F2ZWwgZSBOw4NPIEVYQ0xVU0lWTywgdG9kb3Mgb3MgZGlyZWl0b3MgcGF0cmltb25pYWlzIE7Dg08KQ09NRVJDSUFJUyBkZSB1dGlsaXphw6fDo28gZGEgT0JSQSBhcnTDrXN0aWNhIGUvb3UgY2llbnTDrWZpY2EgaW5kaWNhZGEgYWNpbWEsIGluY2x1c2l2ZSBvcyBkaXJlaXRvcwpkZSB2b3ogZSBpbWFnZW0gdmluY3VsYWRvcyDDoCBPQlJBLCBkdXJhbnRlIHRvZG8gbyBwcmF6byBkZSBkdXJhw6fDo28gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBlbQpxdWFscXVlciBpZGlvbWEgZSBlbSB0b2RvcyBvcyBwYcOtc2VzOwoKKDIpIEFDRUlUQSBxdWUgYSBjZXNzw6NvIHRvdGFsIG7Do28gZXhjbHVzaXZhLCBwZXJtYW5lbnRlIGUgaXJyZXZvZ8OhdmVsIGRvcyBkaXJlaXRvcyBhdXRvcmFpcwpwYXRyaW1vbmlhaXMgbsOjbyBjb21lcmNpYWlzIGRlIHV0aWxpemHDp8OjbyBkZSBxdWUgdHJhdGEgZXN0ZSBkb2N1bWVudG8gaW5jbHVpLCBleGVtcGxpZmljYXRpdmFtZW50ZSwKb3MgZGlyZWl0b3MgZGUgZGlzcG9uaWJpbGl6YcOnw6NvIGUgY29tdW5pY2HDp8OjbyBww7pibGljYSBkYSBPQlJBLCBlbSBxdWFscXVlciBtZWlvIG91IHZlw61jdWxvLAppbmNsdXNpdmUgZW0gUmVwb3NpdMOzcmlvcyBEaWdpdGFpcywgYmVtIGNvbW8gb3MgZGlyZWl0b3MgZGUgcmVwcm9kdcOnw6NvLCBleGliacOnw6NvLCBleGVjdcOnw6NvLApkZWNsYW1hw6fDo28sIHJlY2l0YcOnw6NvLCBleHBvc2nDp8OjbywgYXJxdWl2YW1lbnRvLCBpbmNsdXPDo28gZW0gYmFuY28gZGUgZGFkb3MsIHByZXNlcnZhw6fDo28sIGRpZnVzw6NvLApkaXN0cmlidWnDp8OjbywgZGl2dWxnYcOnw6NvLCBlbXByw6lzdGltbywgdHJhZHXDp8OjbywgZHVibGFnZW0sIGxlZ2VuZGFnZW0sIGluY2x1c8OjbyBlbSBub3ZhcyBvYnJhcyBvdQpjb2xldMOibmVhcywgcmV1dGlsaXphw6fDo28sIGVkacOnw6NvLCBwcm9kdcOnw6NvIGRlIG1hdGVyaWFsIGRpZMOhdGljbyBlIGN1cnNvcyBvdSBxdWFscXVlciBmb3JtYSBkZQp1dGlsaXphw6fDo28gbsOjbyBjb21lcmNpYWw7CgooMykgUkVDT05IRUNFIHF1ZSBhIGNlc3PDo28gYXF1aSBlc3BlY2lmaWNhZGEgY29uY2VkZSDDoCBGSU9DUlVaIC0gRlVOREHDh8ODTyBPU1dBTERPCkNSVVogbyBkaXJlaXRvIGRlIGF1dG9yaXphciBxdWFscXVlciBwZXNzb2Eg4oCTIGbDrXNpY2Egb3UganVyw61kaWNhLCBww7pibGljYSBvdSBwcml2YWRhLCBuYWNpb25hbCBvdQplc3RyYW5nZWlyYSDigJMgYSBhY2Vzc2FyIGUgdXRpbGl6YXIgYW1wbGFtZW50ZSBhIE9CUkEsIHNlbSBleGNsdXNpdmlkYWRlLCBwYXJhIHF1YWlzcXVlcgpmaW5hbGlkYWRlcyBuw6NvIGNvbWVyY2lhaXM7CgooNCkgREVDTEFSQSBxdWUgYSBvYnJhIMOpIGNyaWHDp8OjbyBvcmlnaW5hbCBlIHF1ZSDDqSBvIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGFxdWkgY2VkaWRvcyBlIGF1dG9yaXphZG9zLApyZXNwb25zYWJpbGl6YW5kby1zZSBpbnRlZ3JhbG1lbnRlIHBlbG8gY29udGXDumRvIGUgb3V0cm9zIGVsZW1lbnRvcyBxdWUgZmF6ZW0gcGFydGUgZGEgT0JSQSwKaW5jbHVzaXZlIG9zIGRpcmVpdG9zIGRlIHZveiBlIGltYWdlbSB2aW5jdWxhZG9zIMOgIE9CUkEsIG9icmlnYW5kby1zZSBhIGluZGVuaXphciB0ZXJjZWlyb3MgcG9yCmRhbm9zLCBiZW0gY29tbyBpbmRlbml6YXIgZSByZXNzYXJjaXIgYSBGSU9DUlVaIC0gRlVOREHDh8ODTyBPU1dBTERPIENSVVogZGUKZXZlbnR1YWlzIGRlc3Blc2FzIHF1ZSB2aWVyZW0gYSBzdXBvcnRhciwgZW0gcmF6w6NvIGRlIHF1YWxxdWVyIG9mZW5zYSBhIGRpcmVpdG9zIGF1dG9yYWlzIG91CmRpcmVpdG9zIGRlIHZveiBvdSBpbWFnZW0sIHByaW5jaXBhbG1lbnRlIG5vIHF1ZSBkaXogcmVzcGVpdG8gYSBwbMOhZ2lvIGUgdmlvbGHDp8O1ZXMgZGUgZGlyZWl0b3M7CgooNSkgQUZJUk1BIHF1ZSBjb25oZWNlIGEgUG9sw610aWNhIEluc3RpdHVjaW9uYWwgZGUgQWNlc3NvIEFiZXJ0byBkYSBGSU9DUlVaIC0gRlVOREHDh8ODTwpPU1dBTERPIENSVVogZSBhcyBkaXJldHJpemVzIHBhcmEgbyBmdW5jaW9uYW1lbnRvIGRvIHJlcG9zaXTDs3JpbyBpbnN0aXR1Y2lvbmFsIEFSQ0EuCgpBIFBvbMOtdGljYSBJbnN0aXR1Y2lvbmFsIGRlIEFjZXNzbyBBYmVydG8gZGEgRklPQ1JVWiAtIEZVTkRBw4fDg08gT1NXQUxETyBDUlVaIHJlc2VydmEKZXhjbHVzaXZhbWVudGUgYW8gQVVUT1Igb3MgZGlyZWl0b3MgbW9yYWlzIGUgb3MgdXNvcyBjb21lcmNpYWlzIHNvYnJlIGFzIG9icmFzIGRlIHN1YSBhdXRvcmlhCmUvb3UgdGl0dWxhcmlkYWRlLCBzZW5kbyBvcyB0ZXJjZWlyb3MgdXN1w6FyaW9zIHJlc3BvbnPDoXZlaXMgcGVsYSBhdHJpYnVpw6fDo28gZGUgYXV0b3JpYSBlIG1hbnV0ZW7Dp8OjbwpkYSBpbnRlZ3JpZGFkZSBkYSBPQlJBIGVtIHF1YWxxdWVyIHV0aWxpemHDp8Ojby4KCkEgUG9sw610aWNhIEluc3RpdHVjaW9uYWwgZGUgQWNlc3NvIEFiZXJ0byBkYSBGSU9DUlVaIC0gRlVOREHDh8ODTyBPU1dBTERPIENSVVoKcmVzcGVpdGEgb3MgY29udHJhdG9zIGUgYWNvcmRvcyBwcmVleGlzdGVudGVzIGRvcyBBdXRvcmVzIGNvbSB0ZXJjZWlyb3MsIGNhYmVuZG8gYW9zIEF1dG9yZXMKaW5mb3JtYXIgw6AgSW5zdGl0dWnDp8OjbyBhcyBjb25kacOnw7VlcyBlIG91dHJhcyByZXN0cmnDp8O1ZXMgaW1wb3N0YXMgcG9yIGVzdGVzIGluc3RydW1lbnRvcy4K |
| dc.title.none.fl_str_mv |
Estimation of genetic diversity in viral populations from next generation sequencing data with extremely deep coverage |
| title |
Estimation of genetic diversity in viral populations from next generation sequencing data with extremely deep coverage |
| spellingShingle |
Estimation of genetic diversity in viral populations from next generation sequencing data with extremely deep coverage Zukurov, Jean Paulo Lopes Bayesian inference Dirichlet distribution Viral diversity 10 Redução das desigualdades |
| title_short |
Estimation of genetic diversity in viral populations from next generation sequencing data with extremely deep coverage |
| title_full |
Estimation of genetic diversity in viral populations from next generation sequencing data with extremely deep coverage |
| title_fullStr |
Estimation of genetic diversity in viral populations from next generation sequencing data with extremely deep coverage |
| title_full_unstemmed |
Estimation of genetic diversity in viral populations from next generation sequencing data with extremely deep coverage |
| title_sort |
Estimation of genetic diversity in viral populations from next generation sequencing data with extremely deep coverage |
| author |
Zukurov, Jean Paulo Lopes |
| author_facet |
Zukurov, Jean Paulo Lopes Brito, Sieberth do Nascimento Volpini, Angela Cristina Oliveira, Guilherme Corrêa de Janini, Luiz Mario Ramos Antoneli Junior, Fernando Martins |
| author_role |
author |
| author2 |
Brito, Sieberth do Nascimento Volpini, Angela Cristina Oliveira, Guilherme Corrêa de Janini, Luiz Mario Ramos Antoneli Junior, Fernando Martins |
| author2_role |
author author author author author |
| dc.contributor.author.fl_str_mv |
Zukurov, Jean Paulo Lopes Brito, Sieberth do Nascimento Volpini, Angela Cristina Oliveira, Guilherme Corrêa de Janini, Luiz Mario Ramos Antoneli Junior, Fernando Martins |
| dc.subject.en.none.fl_str_mv |
Bayesian inference Dirichlet distribution Viral diversity |
| topic |
Bayesian inference Dirichlet distribution Viral diversity 10 Redução das desigualdades |
| dc.subject.ods.none.fl_str_mv |
10 Redução das desigualdades |
| description |
Universidade Federal de São Paulo. Escola Paulista de Medicina. Departamento de Medicina. São Paulo, SP, Brasil. |
| publishDate |
2016 |
| dc.date.accessioned.fl_str_mv |
2016-08-23T18:44:25Z |
| dc.date.available.fl_str_mv |
2016-08-23T18:44:25Z |
| dc.date.issued.fl_str_mv |
2016 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
ZUKUROV, Jean Paulo Lopes et al. Estimation of genetic diversity in viral populations from next generation sequencing data with extremely deep coverage. Algorithms Mol Biol., v. 11, p. 2, 2016 |
| dc.identifier.uri.fl_str_mv |
https://arca.fiocruz.br/handle/icict/15354 |
| dc.identifier.issn.none.fl_str_mv |
1748-7188 |
| dc.identifier.doi.none.fl_str_mv |
10.1186/s13015-016-0064-x. eCollection 2016 |
| identifier_str_mv |
ZUKUROV, Jean Paulo Lopes et al. Estimation of genetic diversity in viral populations from next generation sequencing data with extremely deep coverage. Algorithms Mol Biol., v. 11, p. 2, 2016 1748-7188 10.1186/s13015-016-0064-x. eCollection 2016 |
| url |
https://arca.fiocruz.br/handle/icict/15354 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
BioMed Central |
| publisher.none.fl_str_mv |
BioMed Central |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da FIOCRUZ (ARCA) instname:Fundação Oswaldo Cruz (FIOCRUZ) instacron:FIOCRUZ |
| instname_str |
Fundação Oswaldo Cruz (FIOCRUZ) |
| instacron_str |
FIOCRUZ |
| institution |
FIOCRUZ |
| reponame_str |
Repositório Institucional da FIOCRUZ (ARCA) |
| collection |
Repositório Institucional da FIOCRUZ (ARCA) |
| bitstream.url.fl_str_mv |
https://arca.fiocruz.br/bitstreams/bfd7c8c7-9f3a-44da-afa7-6b0d6a8920eb/download https://arca.fiocruz.br/bitstreams/11f1f13b-eaa3-46fc-844e-157bd25db68c/download https://arca.fiocruz.br/bitstreams/ce243bfa-7ad4-40e3-97b8-301c82bc1be4/download https://arca.fiocruz.br/bitstreams/40a4f101-d792-4f6e-8d05-d50df0e11609/download |
| bitstream.checksum.fl_str_mv |
5a560609d32a3863062d77ff32785d58 828bb4463862e79c125c937639dc1451 36f69eb8b82af605de6e63b1bbfbdc7c 03083704ad87debb7a3ee42ca17d932f |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da FIOCRUZ (ARCA) - Fundação Oswaldo Cruz (FIOCRUZ) |
| repository.mail.fl_str_mv |
repositorio.arca@fiocruz.br |
| _version_ |
1839715882202300416 |