Machine learning algorithms using national registry data to predict loss to follow-up during tuberculosis treatment

Detalhes bibliográficos
Autor(a) principal: Rodrigues, Moreno M. S.
Data de Publicação: 2024
Outros Autores: Barreto-Duarte, Beatriz, Vinhaes, Caian L., Araújo-Pereira, Mariana, Fukutani, Eduardo R., Bergamaschi, Keityane Bone, Kristki, Afrânio, Cordeiro-Santos, Marcelo, Rolla, Valeria C., Sterling, Timothy R., Queiroz, Artur T. L., Andrade, Bruno B.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da FIOCRUZ (ARCA)
DOI: 10.1186/s12889-024-18815-0
Texto Completo: https://arca.fiocruz.br/handle/icict/65365
Resumo: Intramural Research Program of the Fundação Oswaldo Cruz (B.B.A.), Departamento de Ciência e Tecnologia (DECIT) - Secretaria de Ciência e Tecnologia (SCTIE) – Ministério da Saúde (MS), Brazil [25029.000507/2013-07 to V.C.R.], the National Institutes of Allergy and Infectious Diseases [U01-AI069923 to T.R.S, MSR, ALK, TRS, BBA, and MCS] and, Programa Inova FIOCRUZ/Edital Inovação Amazônia (Fiocruz, FAPEAM and FAPERO to MR). MAP and B.B.D received a fellowship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Finance code: 001). B.B.A, A.L.K., M.C.S., and V.C.R. are senior investigators of CNPq/Ministry of Science Technology. All authors have read and agreed to the submitted version of the anuscript. The funders had no role in study design, data collection, and interpretation, or the decision to submit the work for publication.
id CRUZ_aa7740a00eb1ff135745b89d25fe15d3
oai_identifier_str oai:arca.fiocruz.br:icict/65365
network_acronym_str CRUZ
network_name_str Repositório Institucional da FIOCRUZ (ARCA)
repository_id_str 2135
spelling Rodrigues, Moreno M. S.Barreto-Duarte, BeatrizVinhaes, Caian L.Araújo-Pereira, MarianaFukutani, Eduardo R.Bergamaschi, Keityane BoneKristki, AfrânioCordeiro-Santos, MarceloRolla, Valeria C.Sterling, Timothy R.Queiroz, Artur T. L.Andrade, Bruno B.2024-08-14T13:30:13Z2024-08-14T13:30:13Z2024RODRIGUES, Moreno M. S. et al. Machine learning algorithms using national registry data to predict loss to follow-up during tuberculosis treatment. BMC Public Health, v. 24, n. 1, p. 1-9, May 2024.1471-2458https://arca.fiocruz.br/handle/icict/6536510.1186/s12889-024-18815-01471-2458Intramural Research Program of the Fundação Oswaldo Cruz (B.B.A.), Departamento de Ciência e Tecnologia (DECIT) - Secretaria de Ciência e Tecnologia (SCTIE) – Ministério da Saúde (MS), Brazil [25029.000507/2013-07 to V.C.R.], the National Institutes of Allergy and Infectious Diseases [U01-AI069923 to T.R.S, MSR, ALK, TRS, BBA, and MCS] and, Programa Inova FIOCRUZ/Edital Inovação Amazônia (Fiocruz, FAPEAM and FAPERO to MR). MAP and B.B.D received a fellowship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Finance code: 001). B.B.A, A.L.K., M.C.S., and V.C.R. are senior investigators of CNPq/Ministry of Science Technology. All authors have read and agreed to the submitted version of the anuscript. The funders had no role in study design, data collection, and interpretation, or the decision to submit the work for publication.Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative. Salvador, BA, Brasil / Fundação Oswaldo Cruz. Fiocruz Rondônia. Laboratório de Análise e Visualização de Dados. Porto Velho, RO, Brasil.Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative. Salvador, BA, Brasil / Universidade Federal do Rio de Janeiro. Programa de Pós-Graduação em Clínica Médica. Rio de Janeiro, RJ, Brasil / Faculdade ZARNS. Instituto de Pesquisa Clínica e Translacional. Curso de Medicina. Salvador, BA, Brasil / Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Laboratório de Pesquisa Clínica e Translacional. Salvador, BA, Brasil.Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative. Salvador, BA, Brasil / Universidade de São Paulo. Faculdade de Medicina. Hospital das Clínicas de São Paulo. Departamento de Infectologia. São Paulo, SP, Brasil / Escola Bahiana de Medicina e Saúde Pública. Curso de Medicina. Salvador, BA, Brasil.Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative. Salvador, BA, Brasil / Faculdade ZARNS. Instituto de Pesquisa Clínica e Translacional. Curso de Medicina. Salvador, BA, Brasil / Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Laboratório de Pesquisa Clínica e Translacional. Salvador, BA, Brasil.Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative. Salvador, BA, Brasil / Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Laboratório de Pesquisa Clínica e Translacional. Salvador, BA, Brasil.Fundação Oswaldo Cruz. Fiocruz Rondônia. Laboratório de Análise e Visualização de Dados. Porto Velho, RO, Brasil.Universidade Federal do Rio de Janeiro. Programa de Pós-Graduação em Clínica Médica. Rio de Janeiro, RJ, Brasil / Universidade Federal do Rio de Janeiro. Faculdade de Medicina. Programa Acadêmico de Tuberculose. Rio de Janeiro, RJ, Brasil.Fundação Medicina Tropical Doutor Heitor Vieira Dourado. Manaus, AM, Brasil / Universidade Nilton Lins. Faculdade de Medicina. Manaus, AM, Brasil.Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Laboratório de Pesquisa Clínica em Micobacteriose. Rio de Janeiro, RJ, Brasil.Vanderbilt University School of Medicine. Department of Medicine. Division of Infectious Diseases. Nashville, TN, USA.Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative. Salvador, BA, Brasil / Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Laboratório de Pesquisa Clínica e Translacional. Salvador, BA, Brasil.Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative. Salvador, BA, Brasil / Universidade Federal do Rio de Janeiro. Programa de Pós-Graduação em Clínica Médica. Rio de Janeiro, RJ, Brasil / Faculdade ZARNS. Instituto de Pesquisa Clínica e Translacional. Curso de Medicina. Salvador, BA, Brasil / Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Laboratório de Pesquisa Clínica e Translacional. Salvador, BA, Brasil / Escola Bahiana de Medicina e Saúde Pública. Curso de Medicina. Salvador, BA, Brasil / Universidade Federal da Bahia. Faculdade de Medicina. Salvador, BA, Brasil / Universidade Federal do Rio de Janeiro. Faculdade de Medicina. Programa Acadêmico de Tuberculose. Rio de Janeiro, RJ, Brasil / Division of Infectious Diseases. Department of Medicine. Vanderbilt University School of Medicine. Nashville, TN, USA / Fundação Oswaldo Cruz. Instituto Gonçalo Moniz. Laboratório de Inflamação e Biomarcadores. Salvador, BA, Brasil.Background: Identifying patients at increased risk of loss to follow-up (LTFU) is key to developing strategies to optimize the clinical management of tuberculosis (TB). The use of national registry data in prediction models may be a useful tool to inform healthcare workers about risk of LTFU. Here we developed a score to predict the risk of LTFU during anti-TB treatment (ATT) in a nationwide cohort of cases using clinical data reported to the Brazilian Notifiable Disease Information System (SINAN). Methods: We performed a retrospective study of all TB cases reported to SINAN between 2015-2022; excluding children (<18 years-old), vulnerable groups or drug-resistant TB. For the score, data before treatment initiation were used. We trained and internally validated three different prediction scoring systems, based on Logistic Regression, Random Forest, and Light Gradient Boosting. Before applying our models we split our data into train (~80% data) and test (~20%), and then we compare model metrics using a test data set. Results: Of the 243,726 cases included, 41,373 experienced LTFU whereas 202,353 were successfully treated and cured. The groups were different with regards to several clinical and sociodemographic characteristics. The directly observed treatment (DOT) was unbalanced between the groups with lower prevalence in those who were LTFU. Three models were developed to predict LTFU using 8 features (prior TB, drug use, age, sex, HIV infection and schooling level) with different score composition approaches. Those prediction scoring system exhibited an area under the curve (AUC) ranging between 0.71 and 0.72. The Light Gradient Boosting technique resulted in the best prediction performance, weighting specificity, and sensibility. A user-friendly web calculator app was created (https://tbprediction.herokuapp.com/) to facilitate implementation. Conclusions: Our nationwide risk score predicts the risk of LTFU during ATT in Brazilian adults prior to treatment commencement. This is a potential tool to assist in decision-making strategies to guide resource allocation, DOT indications, and improve TB treatment adherence.engBioMed CentralPerda de acompanhamentoAprendizado de máquinaPrevisão de pontuaçãoTuberculoseLoss to follow-upMachine learningScore predictionTuberculosisAprendizado de máquinaTuberculose04 Educação de qualidadeMachine learning algorithms using national registry data to predict loss to follow-up during tuberculosis treatmentinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da FIOCRUZ (ARCA)instname:Fundação Oswaldo Cruz (FIOCRUZ)instacron:FIOCRUZLICENSElicense.txtlicense.txttext/plain; charset=utf-82991https://arca.fiocruz.br/bitstreams/9f602047-459b-44e0-b9ef-86d4247af3d3/download5a560609d32a3863062d77ff32785d58MD51falseAnonymousREADTHUMBNAILcapa_page-0001.jpgcapa_page-0001.jpgimage/jpeg842114https://arca.fiocruz.br/bitstreams/f77f849a-a97b-4a58-a60a-77ed1aad27ee/downloada965db58ecfff8668f2c1d4a63beffdaMD53falseAnonymousREADve_Moreno M. S. Rodrigues_etal_IGM_INI_FIOCRUZ RONDÔNIA_2024.pdf.jpgve_Moreno M. S. Rodrigues_etal_IGM_INI_FIOCRUZ RONDÔNIA_2024.pdf.jpgGenerated Thumbnailimage/jpeg5297https://arca.fiocruz.br/bitstreams/0c91f529-ddf1-4ef5-86b4-7d147ca486d0/download861b1e93d40f68d6a4730eeb08f6822cMD58falseAnonymousREADORIGINALve_Moreno M. S. Rodrigues_etal_IGM_INI_FIOCRUZ RONDÔNIA_2024.pdfve_Moreno M. S. Rodrigues_etal_IGM_INI_FIOCRUZ RONDÔNIA_2024.pdfapplication/pdf1587077https://arca.fiocruz.br/bitstreams/6287765c-3c7b-4267-95b0-0ce01d860643/downloadd1b8fcac8b3ba8c2187c048af23101d6MD54trueAnonymousREADTEXTve_Moreno M. S. Rodrigues_etal_IGM_INI_FIOCRUZ RONDÔNIA_2024.pdf.txtve_Moreno M. S. Rodrigues_etal_IGM_INI_FIOCRUZ RONDÔNIA_2024.pdf.txtExtracted texttext/plain41453https://arca.fiocruz.br/bitstreams/70d5eea0-7871-4367-8dd4-ddbf1d3e4dd2/downloadd7d2a4d2ad24131e2c56a74e14225997MD57falseAnonymousREADicict/653652025-07-30 01:23:01.787open.accessoai:arca.fiocruz.br:icict/65365https://arca.fiocruz.brRepositório InstitucionalPUBhttps://www.arca.fiocruz.br/oai/requestrepositorio.arca@fiocruz.bropendoar:21352025-07-30T04:23:01Repositório Institucional da FIOCRUZ (ARCA) - Fundação Oswaldo Cruz (FIOCRUZ)falseQ0VTU8ODTyBOw4NPIEVYQ0xVU0lWQSBERSBESVJFSVRPUyBBVVRPUkFJUwoKQW8gYWNlaXRhciBvcyBURVJNT1MgZSBDT05EScOHw5VFUyBkZXN0YSBDRVNTw4NPLCBvIEFVVE9SIGUvb3UgVElUVUxBUiBkZSBkaXJlaXRvcwphdXRvcmFpcyBzb2JyZSBhIE9CUkEgZGUgcXVlIHRyYXRhIGVzdGUgZG9jdW1lbnRvOgoKKDEpIENFREUgZSBUUkFOU0ZFUkUsIHRvdGFsIGUgZ3JhdHVpdGFtZW50ZSwgw6AgRklPQ1JVWiAtIEZVTkRBw4fDg08gT1NXQUxETyBDUlVaLCBlbQpjYXLDoXRlciBwZXJtYW5lbnRlLCBpcnJldm9nw6F2ZWwgZSBOw4NPIEVYQ0xVU0lWTywgdG9kb3Mgb3MgZGlyZWl0b3MgcGF0cmltb25pYWlzIE7Dg08KQ09NRVJDSUFJUyBkZSB1dGlsaXphw6fDo28gZGEgT0JSQSBhcnTDrXN0aWNhIGUvb3UgY2llbnTDrWZpY2EgaW5kaWNhZGEgYWNpbWEsIGluY2x1c2l2ZSBvcyBkaXJlaXRvcwpkZSB2b3ogZSBpbWFnZW0gdmluY3VsYWRvcyDDoCBPQlJBLCBkdXJhbnRlIHRvZG8gbyBwcmF6byBkZSBkdXJhw6fDo28gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBlbQpxdWFscXVlciBpZGlvbWEgZSBlbSB0b2RvcyBvcyBwYcOtc2VzOwoKKDIpIEFDRUlUQSBxdWUgYSBjZXNzw6NvIHRvdGFsIG7Do28gZXhjbHVzaXZhLCBwZXJtYW5lbnRlIGUgaXJyZXZvZ8OhdmVsIGRvcyBkaXJlaXRvcyBhdXRvcmFpcwpwYXRyaW1vbmlhaXMgbsOjbyBjb21lcmNpYWlzIGRlIHV0aWxpemHDp8OjbyBkZSBxdWUgdHJhdGEgZXN0ZSBkb2N1bWVudG8gaW5jbHVpLCBleGVtcGxpZmljYXRpdmFtZW50ZSwKb3MgZGlyZWl0b3MgZGUgZGlzcG9uaWJpbGl6YcOnw6NvIGUgY29tdW5pY2HDp8OjbyBww7pibGljYSBkYSBPQlJBLCBlbSBxdWFscXVlciBtZWlvIG91IHZlw61jdWxvLAppbmNsdXNpdmUgZW0gUmVwb3NpdMOzcmlvcyBEaWdpdGFpcywgYmVtIGNvbW8gb3MgZGlyZWl0b3MgZGUgcmVwcm9kdcOnw6NvLCBleGliacOnw6NvLCBleGVjdcOnw6NvLApkZWNsYW1hw6fDo28sIHJlY2l0YcOnw6NvLCBleHBvc2nDp8OjbywgYXJxdWl2YW1lbnRvLCBpbmNsdXPDo28gZW0gYmFuY28gZGUgZGFkb3MsIHByZXNlcnZhw6fDo28sIGRpZnVzw6NvLApkaXN0cmlidWnDp8OjbywgZGl2dWxnYcOnw6NvLCBlbXByw6lzdGltbywgdHJhZHXDp8OjbywgZHVibGFnZW0sIGxlZ2VuZGFnZW0sIGluY2x1c8OjbyBlbSBub3ZhcyBvYnJhcyBvdQpjb2xldMOibmVhcywgcmV1dGlsaXphw6fDo28sIGVkacOnw6NvLCBwcm9kdcOnw6NvIGRlIG1hdGVyaWFsIGRpZMOhdGljbyBlIGN1cnNvcyBvdSBxdWFscXVlciBmb3JtYSBkZQp1dGlsaXphw6fDo28gbsOjbyBjb21lcmNpYWw7CgooMykgUkVDT05IRUNFIHF1ZSBhIGNlc3PDo28gYXF1aSBlc3BlY2lmaWNhZGEgY29uY2VkZSDDoCBGSU9DUlVaIC0gRlVOREHDh8ODTyBPU1dBTERPCkNSVVogbyBkaXJlaXRvIGRlIGF1dG9yaXphciBxdWFscXVlciBwZXNzb2Eg4oCTIGbDrXNpY2Egb3UganVyw61kaWNhLCBww7pibGljYSBvdSBwcml2YWRhLCBuYWNpb25hbCBvdQplc3RyYW5nZWlyYSDigJMgYSBhY2Vzc2FyIGUgdXRpbGl6YXIgYW1wbGFtZW50ZSBhIE9CUkEsIHNlbSBleGNsdXNpdmlkYWRlLCBwYXJhIHF1YWlzcXVlcgpmaW5hbGlkYWRlcyBuw6NvIGNvbWVyY2lhaXM7CgooNCkgREVDTEFSQSBxdWUgYSBvYnJhIMOpIGNyaWHDp8OjbyBvcmlnaW5hbCBlIHF1ZSDDqSBvIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGFxdWkgY2VkaWRvcyBlIGF1dG9yaXphZG9zLApyZXNwb25zYWJpbGl6YW5kby1zZSBpbnRlZ3JhbG1lbnRlIHBlbG8gY29udGXDumRvIGUgb3V0cm9zIGVsZW1lbnRvcyBxdWUgZmF6ZW0gcGFydGUgZGEgT0JSQSwKaW5jbHVzaXZlIG9zIGRpcmVpdG9zIGRlIHZveiBlIGltYWdlbSB2aW5jdWxhZG9zIMOgIE9CUkEsIG9icmlnYW5kby1zZSBhIGluZGVuaXphciB0ZXJjZWlyb3MgcG9yCmRhbm9zLCBiZW0gY29tbyBpbmRlbml6YXIgZSByZXNzYXJjaXIgYSBGSU9DUlVaIC0gRlVOREHDh8ODTyBPU1dBTERPIENSVVogZGUKZXZlbnR1YWlzIGRlc3Blc2FzIHF1ZSB2aWVyZW0gYSBzdXBvcnRhciwgZW0gcmF6w6NvIGRlIHF1YWxxdWVyIG9mZW5zYSBhIGRpcmVpdG9zIGF1dG9yYWlzIG91CmRpcmVpdG9zIGRlIHZveiBvdSBpbWFnZW0sIHByaW5jaXBhbG1lbnRlIG5vIHF1ZSBkaXogcmVzcGVpdG8gYSBwbMOhZ2lvIGUgdmlvbGHDp8O1ZXMgZGUgZGlyZWl0b3M7CgooNSkgQUZJUk1BIHF1ZSBjb25oZWNlIGEgUG9sw610aWNhIEluc3RpdHVjaW9uYWwgZGUgQWNlc3NvIEFiZXJ0byBkYSBGSU9DUlVaIC0gRlVOREHDh8ODTwpPU1dBTERPIENSVVogZSBhcyBkaXJldHJpemVzIHBhcmEgbyBmdW5jaW9uYW1lbnRvIGRvIHJlcG9zaXTDs3JpbyBpbnN0aXR1Y2lvbmFsIEFSQ0EuCgpBIFBvbMOtdGljYSBJbnN0aXR1Y2lvbmFsIGRlIEFjZXNzbyBBYmVydG8gZGEgRklPQ1JVWiAtIEZVTkRBw4fDg08gT1NXQUxETyBDUlVaIHJlc2VydmEKZXhjbHVzaXZhbWVudGUgYW8gQVVUT1Igb3MgZGlyZWl0b3MgbW9yYWlzIGUgb3MgdXNvcyBjb21lcmNpYWlzIHNvYnJlIGFzIG9icmFzIGRlIHN1YSBhdXRvcmlhCmUvb3UgdGl0dWxhcmlkYWRlLCBzZW5kbyBvcyB0ZXJjZWlyb3MgdXN1w6FyaW9zIHJlc3BvbnPDoXZlaXMgcGVsYSBhdHJpYnVpw6fDo28gZGUgYXV0b3JpYSBlIG1hbnV0ZW7Dp8OjbwpkYSBpbnRlZ3JpZGFkZSBkYSBPQlJBIGVtIHF1YWxxdWVyIHV0aWxpemHDp8Ojby4KCkEgUG9sw610aWNhIEluc3RpdHVjaW9uYWwgZGUgQWNlc3NvIEFiZXJ0byBkYSBGSU9DUlVaIC0gRlVOREHDh8ODTyBPU1dBTERPIENSVVoKcmVzcGVpdGEgb3MgY29udHJhdG9zIGUgYWNvcmRvcyBwcmVleGlzdGVudGVzIGRvcyBBdXRvcmVzIGNvbSB0ZXJjZWlyb3MsIGNhYmVuZG8gYW9zIEF1dG9yZXMKaW5mb3JtYXIgw6AgSW5zdGl0dWnDp8OjbyBhcyBjb25kacOnw7VlcyBlIG91dHJhcyByZXN0cmnDp8O1ZXMgaW1wb3N0YXMgcG9yIGVzdGVzIGluc3RydW1lbnRvcy4K
dc.title.none.fl_str_mv Machine learning algorithms using national registry data to predict loss to follow-up during tuberculosis treatment
title Machine learning algorithms using national registry data to predict loss to follow-up during tuberculosis treatment
spellingShingle Machine learning algorithms using national registry data to predict loss to follow-up during tuberculosis treatment
Rodrigues, Moreno M. S.
Perda de acompanhamento
Aprendizado de máquina
Previsão de pontuação
Tuberculose
Loss to follow-up
Machine learning
Score prediction
Tuberculosis
Aprendizado de máquina
Tuberculose
04 Educação de qualidade
title_short Machine learning algorithms using national registry data to predict loss to follow-up during tuberculosis treatment
title_full Machine learning algorithms using national registry data to predict loss to follow-up during tuberculosis treatment
title_fullStr Machine learning algorithms using national registry data to predict loss to follow-up during tuberculosis treatment
title_full_unstemmed Machine learning algorithms using national registry data to predict loss to follow-up during tuberculosis treatment
title_sort Machine learning algorithms using national registry data to predict loss to follow-up during tuberculosis treatment
author Rodrigues, Moreno M. S.
author_facet Rodrigues, Moreno M. S.
Barreto-Duarte, Beatriz
Vinhaes, Caian L.
Araújo-Pereira, Mariana
Fukutani, Eduardo R.
Bergamaschi, Keityane Bone
Kristki, Afrânio
Cordeiro-Santos, Marcelo
Rolla, Valeria C.
Sterling, Timothy R.
Queiroz, Artur T. L.
Andrade, Bruno B.
author_role author
author2 Barreto-Duarte, Beatriz
Vinhaes, Caian L.
Araújo-Pereira, Mariana
Fukutani, Eduardo R.
Bergamaschi, Keityane Bone
Kristki, Afrânio
Cordeiro-Santos, Marcelo
Rolla, Valeria C.
Sterling, Timothy R.
Queiroz, Artur T. L.
Andrade, Bruno B.
author2_role author
author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Rodrigues, Moreno M. S.
Barreto-Duarte, Beatriz
Vinhaes, Caian L.
Araújo-Pereira, Mariana
Fukutani, Eduardo R.
Bergamaschi, Keityane Bone
Kristki, Afrânio
Cordeiro-Santos, Marcelo
Rolla, Valeria C.
Sterling, Timothy R.
Queiroz, Artur T. L.
Andrade, Bruno B.
dc.subject.other.none.fl_str_mv Perda de acompanhamento
Aprendizado de máquina
Previsão de pontuação
Tuberculose
topic Perda de acompanhamento
Aprendizado de máquina
Previsão de pontuação
Tuberculose
Loss to follow-up
Machine learning
Score prediction
Tuberculosis
Aprendizado de máquina
Tuberculose
04 Educação de qualidade
dc.subject.en.none.fl_str_mv Loss to follow-up
Machine learning
Score prediction
Tuberculosis
dc.subject.decs.none.fl_str_mv Aprendizado de máquina
Tuberculose
dc.subject.ods.none.fl_str_mv 04 Educação de qualidade
description Intramural Research Program of the Fundação Oswaldo Cruz (B.B.A.), Departamento de Ciência e Tecnologia (DECIT) - Secretaria de Ciência e Tecnologia (SCTIE) – Ministério da Saúde (MS), Brazil [25029.000507/2013-07 to V.C.R.], the National Institutes of Allergy and Infectious Diseases [U01-AI069923 to T.R.S, MSR, ALK, TRS, BBA, and MCS] and, Programa Inova FIOCRUZ/Edital Inovação Amazônia (Fiocruz, FAPEAM and FAPERO to MR). MAP and B.B.D received a fellowship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Finance code: 001). B.B.A, A.L.K., M.C.S., and V.C.R. are senior investigators of CNPq/Ministry of Science Technology. All authors have read and agreed to the submitted version of the anuscript. The funders had no role in study design, data collection, and interpretation, or the decision to submit the work for publication.
publishDate 2024
dc.date.accessioned.fl_str_mv 2024-08-14T13:30:13Z
dc.date.available.fl_str_mv 2024-08-14T13:30:13Z
dc.date.issued.fl_str_mv 2024
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv RODRIGUES, Moreno M. S. et al. Machine learning algorithms using national registry data to predict loss to follow-up during tuberculosis treatment. BMC Public Health, v. 24, n. 1, p. 1-9, May 2024.
dc.identifier.uri.fl_str_mv https://arca.fiocruz.br/handle/icict/65365
dc.identifier.issn.none.fl_str_mv 1471-2458
dc.identifier.doi.none.fl_str_mv 10.1186/s12889-024-18815-0
dc.identifier.eissn.none.fl_str_mv 1471-2458
identifier_str_mv RODRIGUES, Moreno M. S. et al. Machine learning algorithms using national registry data to predict loss to follow-up during tuberculosis treatment. BMC Public Health, v. 24, n. 1, p. 1-9, May 2024.
1471-2458
10.1186/s12889-024-18815-0
url https://arca.fiocruz.br/handle/icict/65365
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv BioMed Central
publisher.none.fl_str_mv BioMed Central
dc.source.none.fl_str_mv reponame:Repositório Institucional da FIOCRUZ (ARCA)
instname:Fundação Oswaldo Cruz (FIOCRUZ)
instacron:FIOCRUZ
instname_str Fundação Oswaldo Cruz (FIOCRUZ)
instacron_str FIOCRUZ
institution FIOCRUZ
reponame_str Repositório Institucional da FIOCRUZ (ARCA)
collection Repositório Institucional da FIOCRUZ (ARCA)
bitstream.url.fl_str_mv https://arca.fiocruz.br/bitstreams/9f602047-459b-44e0-b9ef-86d4247af3d3/download
https://arca.fiocruz.br/bitstreams/f77f849a-a97b-4a58-a60a-77ed1aad27ee/download
https://arca.fiocruz.br/bitstreams/0c91f529-ddf1-4ef5-86b4-7d147ca486d0/download
https://arca.fiocruz.br/bitstreams/6287765c-3c7b-4267-95b0-0ce01d860643/download
https://arca.fiocruz.br/bitstreams/70d5eea0-7871-4367-8dd4-ddbf1d3e4dd2/download
bitstream.checksum.fl_str_mv 5a560609d32a3863062d77ff32785d58
a965db58ecfff8668f2c1d4a63beffda
861b1e93d40f68d6a4730eeb08f6822c
d1b8fcac8b3ba8c2187c048af23101d6
d7d2a4d2ad24131e2c56a74e14225997
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da FIOCRUZ (ARCA) - Fundação Oswaldo Cruz (FIOCRUZ)
repository.mail.fl_str_mv repositorio.arca@fiocruz.br
_version_ 1839716367828254720