On complete spacelike hypersurfaces with constant scalar curvature in the de Sitter space
| Main Author: | |
|---|---|
| Publication Date: | 2000 |
| Other Authors: | |
| Format: | Article |
| Language: | eng |
| Source: | Anais da Academia Brasileira de Ciências (Online) |
| Download full: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652000000400001 |
Summary: | Let Mn be a complete spacelike hypersurface with constant normalized scalar curvature R in the de Sitter Space S1n + 1. Let H the mean curvature and suppose that <img ALIGN="BOTTOM" BORDER="0" SRC="http:/img/fbpe/aabc/v72n4/0045img1.gif" ALT="$ \overline{R}$"> = (R - 1) > 0 and <img ALIGN="BOTTOM" BORDER="0" SRC="http:/img/fbpe/aabc/v72n4/0045img1.gif" ALT="$ \overline{R}$"> <= sup H² <= C<img ALIGN="BOTTOM" BORDER="0" SRC="http:/img/fbpe/aabc/v72n4/0045img3.gif" ALT="$\scriptstyle \overline{R}$">, where C<img ALIGN="BOTTOM" BORDER="0" SRC="http:/img/fbpe/aabc/v72n4/0045img3.gif" ALT="$\scriptstyle \overline{R}$"> is a constant depending only on R and n. It is proved that either sup H² = <img ALIGN="BOTTOM" BORDER="0" SRC="http:/img/fbpe/aabc/v72n4/0045img1.gif" ALT="$ \overline{R}$"> and Mn is totally umbilical, or sup H² = C<img ALIGN="BOTTOM" BORDER="0" SRC="http:/img/fbpe/aabc/v72n4/0045img3.gif" ALT="$\scriptstyle \overline{R}$"> and Mn is the hyperbolic cylinder H¹(1 - coth²r) x Sn - 1 (1 - tanh²r). |
| id |
ABC-1_52b0fb0d408aa6a70f8dac89d5e759d8 |
|---|---|
| oai_identifier_str |
oai:scielo:S0001-37652000000400001 |
| network_acronym_str |
ABC-1 |
| network_name_str |
Anais da Academia Brasileira de Ciências (Online) |
| repository_id_str |
|
| spelling |
On complete spacelike hypersurfaces with constant scalar curvature in the de Sitter spacehyperbolic cylinderspacelike hypersurfacesde Sitter spaceLet Mn be a complete spacelike hypersurface with constant normalized scalar curvature R in the de Sitter Space S1n + 1. Let H the mean curvature and suppose that <img ALIGN="BOTTOM" BORDER="0" SRC="http:/img/fbpe/aabc/v72n4/0045img1.gif" ALT="$ \overline{R}$"> = (R - 1) > 0 and <img ALIGN="BOTTOM" BORDER="0" SRC="http:/img/fbpe/aabc/v72n4/0045img1.gif" ALT="$ \overline{R}$"> <= sup H² <= C<img ALIGN="BOTTOM" BORDER="0" SRC="http:/img/fbpe/aabc/v72n4/0045img3.gif" ALT="$\scriptstyle \overline{R}$">, where C<img ALIGN="BOTTOM" BORDER="0" SRC="http:/img/fbpe/aabc/v72n4/0045img3.gif" ALT="$\scriptstyle \overline{R}$"> is a constant depending only on R and n. It is proved that either sup H² = <img ALIGN="BOTTOM" BORDER="0" SRC="http:/img/fbpe/aabc/v72n4/0045img1.gif" ALT="$ \overline{R}$"> and Mn is totally umbilical, or sup H² = C<img ALIGN="BOTTOM" BORDER="0" SRC="http:/img/fbpe/aabc/v72n4/0045img3.gif" ALT="$\scriptstyle \overline{R}$"> and Mn is the hyperbolic cylinder H¹(1 - coth²r) x Sn - 1 (1 - tanh²r).Academia Brasileira de Ciências2000-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652000000400001Anais da Academia Brasileira de Ciências v.72 n.4 2000reponame:Anais da Academia Brasileira de Ciências (Online)instname:Academia Brasileira de Ciências (ABC)instacron:ABC10.1590/S0001-37652000000400001info:eu-repo/semantics/openAccessBRASIL JR,ALDIRCOLARES,A. GERVASIOeng2001-01-05T00:00:00Zoai:scielo:S0001-37652000000400001Revistahttp://www.scielo.br/aabchttps://old.scielo.br/oai/scielo-oai.php||aabc@abc.org.br1678-26900001-3765opendoar:2001-01-05T00:00Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC)false |
| dc.title.none.fl_str_mv |
On complete spacelike hypersurfaces with constant scalar curvature in the de Sitter space |
| title |
On complete spacelike hypersurfaces with constant scalar curvature in the de Sitter space |
| spellingShingle |
On complete spacelike hypersurfaces with constant scalar curvature in the de Sitter space BRASIL JR,ALDIR hyperbolic cylinder spacelike hypersurfaces de Sitter space |
| title_short |
On complete spacelike hypersurfaces with constant scalar curvature in the de Sitter space |
| title_full |
On complete spacelike hypersurfaces with constant scalar curvature in the de Sitter space |
| title_fullStr |
On complete spacelike hypersurfaces with constant scalar curvature in the de Sitter space |
| title_full_unstemmed |
On complete spacelike hypersurfaces with constant scalar curvature in the de Sitter space |
| title_sort |
On complete spacelike hypersurfaces with constant scalar curvature in the de Sitter space |
| author |
BRASIL JR,ALDIR |
| author_facet |
BRASIL JR,ALDIR COLARES,A. GERVASIO |
| author_role |
author |
| author2 |
COLARES,A. GERVASIO |
| author2_role |
author |
| dc.contributor.author.fl_str_mv |
BRASIL JR,ALDIR COLARES,A. GERVASIO |
| dc.subject.por.fl_str_mv |
hyperbolic cylinder spacelike hypersurfaces de Sitter space |
| topic |
hyperbolic cylinder spacelike hypersurfaces de Sitter space |
| description |
Let Mn be a complete spacelike hypersurface with constant normalized scalar curvature R in the de Sitter Space S1n + 1. Let H the mean curvature and suppose that <img ALIGN="BOTTOM" BORDER="0" SRC="http:/img/fbpe/aabc/v72n4/0045img1.gif" ALT="$ \overline{R}$"> = (R - 1) > 0 and <img ALIGN="BOTTOM" BORDER="0" SRC="http:/img/fbpe/aabc/v72n4/0045img1.gif" ALT="$ \overline{R}$"> <= sup H² <= C<img ALIGN="BOTTOM" BORDER="0" SRC="http:/img/fbpe/aabc/v72n4/0045img3.gif" ALT="$\scriptstyle \overline{R}$">, where C<img ALIGN="BOTTOM" BORDER="0" SRC="http:/img/fbpe/aabc/v72n4/0045img3.gif" ALT="$\scriptstyle \overline{R}$"> is a constant depending only on R and n. It is proved that either sup H² = <img ALIGN="BOTTOM" BORDER="0" SRC="http:/img/fbpe/aabc/v72n4/0045img1.gif" ALT="$ \overline{R}$"> and Mn is totally umbilical, or sup H² = C<img ALIGN="BOTTOM" BORDER="0" SRC="http:/img/fbpe/aabc/v72n4/0045img3.gif" ALT="$\scriptstyle \overline{R}$"> and Mn is the hyperbolic cylinder H¹(1 - coth²r) x Sn - 1 (1 - tanh²r). |
| publishDate |
2000 |
| dc.date.none.fl_str_mv |
2000-12-01 |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652000000400001 |
| url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652000000400001 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
10.1590/S0001-37652000000400001 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
text/html |
| dc.publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
| publisher.none.fl_str_mv |
Academia Brasileira de Ciências |
| dc.source.none.fl_str_mv |
Anais da Academia Brasileira de Ciências v.72 n.4 2000 reponame:Anais da Academia Brasileira de Ciências (Online) instname:Academia Brasileira de Ciências (ABC) instacron:ABC |
| instname_str |
Academia Brasileira de Ciências (ABC) |
| instacron_str |
ABC |
| institution |
ABC |
| reponame_str |
Anais da Academia Brasileira de Ciências (Online) |
| collection |
Anais da Academia Brasileira de Ciências (Online) |
| repository.name.fl_str_mv |
Anais da Academia Brasileira de Ciências (Online) - Academia Brasileira de Ciências (ABC) |
| repository.mail.fl_str_mv |
||aabc@abc.org.br |
| _version_ |
1754302855420837888 |