Exportação concluída — 

Controlabilidade de sistemas lineares em grupos de Lie

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Chabin, Emmanuel
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.unb.br/handle/10482/38693
Resumo: Começamos com uma breve introdução à teoria de Lie. Em seguida, definimos campos de vetores afins e lineares em grupos de Lie, e provamos a equivalência entre três caracterizações dos campos de vetores lineares. Então definimos os campos de vetores lineares internos, e estabelecemos propriedades deles com relação a campos invariantes à direita. Feito isso, definimos os sistemas de controle lineares, afins, e invariantes à direita, a condição do posto, e a condição ad-rank. Então focamos nos sistemas lineares para definir e estudar seus vários tipos de conjuntos de atingibilidade, e sua álgebra de Lie. Em seguida, tratamos o caso dos sistemas lineares internos. Mostramos que existe um sistema invariante associado, cuja controlabilidade em tempo finito, e com tempo ótimo, estão relacionadas àquelas do sistema linear interno. Depois disso, aplicamos esses resultados ao estudo da controlabilidade dos sistemas lineares em grupos de Lie semi-simples e em grupos de Lie nilpotentes, e dos sistemas de controle afins em grupos de Lie compactos. Terminamos com alguns exemplos.