[en] ASYMPTOTIC NETS WITH CONSTANT AFFINE MEAN CURVATURE

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: ANDERSON REIS DE VARGAS
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=54401&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=54401&idi=2
http://doi.org/10.17771/PUCRio.acad.54401
Resumo: [pt] A Geometria Diferencial Discreta tem por objetivo desenvolver uma teoria discreta que respeite os aspectos fundamentais da teoria suave. Com isto em mente, são apresentados incialmente resultados da teoria suave da Geometria Afim que terão suas versões discretas tratadas a posteriori. O primeiro objetivo deste trabalho é construir uma estrutura afim discreta para as redes assintóticas definidas no espaço tridimensional, com métrica de Blaschke indefinida e parâmetros assintóticos. Com este intuito, são definidos um campo conormal, que satisfaz as equações de Lelieuvre e está associado a um parâmetro real, e um normal afim que define a forma cúbica da rede e torna a estrutura bem definida. Esta estrutura permite, por exemplo, o estudo das superfícies regradas, com ênfase nas esferas afins impróprias. Além disso, propõe-se uma definição para as singularidades no caso das esferas afins impróprias discretas a partir da construção centrocorda. Outro objetivo deste trabalho é propor uma definição para as superfícies afins discretas com curvatura afim média constante (CAMC), de forma que englobe as superfícies afins mínimas e as esferas afins. As superfícies afins mínimas discretas recebem uma caracterização geométrica bastante interessane e ligada diretamente às quádricas de Lie discretas. O trabalho se completa com o principal resultado, referente à versão discreta das superfícies de Cayley, esferas afins impróprias regradas caracterizadas a partir da conexão afim induzida: uma rede assintótica com CAMC é congruente equiafim à uma superfície de Cayley se, e somente se, a forma cúbica é não nula e a conexão afim induzida é paralela.