Exportação concluída — 

[en] MACHINE LEARNING AND HUMAN LEARNING: AN ENACTIVIST ANALYSIS

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: CAMILA DE PAOLI LEPORACE
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=61821&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=61821&idi=2
http://doi.org/10.17771/PUCRio.acad.61821
Resumo: [pt] Situada no campo da filosofia da educação, a tese dialoga também com o campo das tecnologias educacionais. O trabalho busca uma compreensão filosófica dos impactos da aprendizagem de máquina ou machine learning na educação. Para isso, dedica-se aos pressupostos subjacentes à aprendizagem de máquina em articulação com os pressupostos subjacentes à concepção de aprendizagem humana que descende do enativismo. Defende-se que a chegada da aprendizagem de máquina na educação encontra um campo em que ainda predomina o paradigma cognitivista, o qual é bastante profícuo para que germinem as tecnologias baseadas em dados e redes neurais. Avança-se para demonstrar que esse paradigma, no entanto, vem sendo desafiado por outras abordagens de pesquisa que se dedicam à mente humana, dentre as quais se destaca o enativismo. São explicitadas as bases teóricas fundamentais do enativismo, e como elas se desdobram em pressupostos para uma aprendizagem humana que é corporificada e essencialmente orientada ao acoplamento do ser com o mundo e com os outros agentes. É dedicada atenção especial aos impactos da aprendizagem de máquina na autonomia do cognoscente, a qual, sob a perspectiva do enativismo, somente pode existir e se manter nas trocas com o meio e com aqueles que habitam e formam esse ambiente. Demonstra-se que, para que as tecnologias algorítmicas sejam adequadas a uma concepção de cognição e de aprendizagem enativista, é preciso buscar um caminho de valorização ainda maior do corpo na aprendizagem, bem como da intersubjetividade, uma vez que as relações entre os agentes cognitivos não são concebidas como articulações opcionais, mas como um elemento que está no cerne da atividade cognitiva humana e do qual essa atividade emerge.